Abstract:
Described are methods and systems for broad-band active reduction of noise in target spaces, such as spaces around headrests in aircraft cabins. Systems describe herein are effective over wide frequency ranges without causing undesirable amplification at any subrange ranges. Specifically, a system comprises a speaker and a resonator, both coupled to an enclosure. The interior space of the resonator is in fluid communication with the enclosed space of the enclosure, allowing the resonator to reduce the amplitude of unwanted amplification by the audio reducing sound generated by the speaker. The amplitude is reduced in a selected frequency range, which may correspond to an expected amplification for this particular system. The resonator may partially extend into the enclosure or may be completely incorporated into the enclosure. Some examples of the resonator include a Helmholtz resonator, a passive radiator, a quarter wave resonator, a pipe resonator, and an acoustic metamaterial.
Abstract:
Described herein are noise attenuating ducts and vehicles using these ducts for environmental control systems. A duct comprises an exoskeleton structure and a sound-absorbing structure, disposed within and conforming to the exoskeleton structure. The exoskeleton structure provides external mechanical support to the sound-absorbing structure thereby helping to maintain the tubular shape of the sound-absorbing structure. This external support does not interfere with the airflow inside the sound-absorbing structure. Furthermore, the external positioning of the exoskeleton structure allows the integration of various support mounting features for the installation of the duct in a vehicle. In some examples, the exoskeleton structure comprises a plurality of enclosed openings to reduce the weight of the exoskeleton structure and provide additional flexibility. Furthermore, additive manufacturing of the exoskeleton structure allows achieving a monolithic structure with various features and characteristics described above.
Abstract:
A duct includes a foam-filled honeycomb core structure having a tubular shape. The duct further includes an air-impermeable duct wall coupled to an exterior surface of the foam-filled honeycomb core structure.
Abstract:
A panel includes a structural substrate and a damping element including a viscoelastic material (VEM) layer coupleable to the structural substrate of the aircraft, and a constraining layer coupled to the VEM layer. The VEM layer is configured to dampen a vibration of the structural substrate. The constraining layer is configured to apply a shear force to the VEM layer.
Abstract:
A duct includes a foam-filled honeycomb core structure having a tubular shape. The duct further includes an air-impermeable duct wall coupled to an exterior surface of the foam-filled honeycomb core structure.
Abstract:
Described herein are noise attenuating ducts and vehicles using these ducts for environmental control systems. A duct comprises an exoskeleton structure and a sound-absorbing structure, disposed within and conforming to the exoskeleton structure. The exoskeleton structure provides external mechanical support to the sound-absorbing structure thereby helping to maintain the tubular shape of the sound-absorbing structure. This external support does not interfere with the airflow inside the sound-absorbing structure. Furthermore, the external positioning of the exoskeleton structure allows the integration of various support mounting features for the installation of the duct in a vehicle. In some examples, the exoskeleton structure comprises a plurality of enclosed openings to reduce the weight of the exoskeleton structure and provide additional flexibility. Furthermore, additive manufacturing of the exoskeleton structure allows achieving a monolithic structure with various features and characteristics described above.
Abstract:
Described are methods and systems for broad-band active reduction of noise in target spaces, such as spaces around headrests in aircraft cabins. Systems describe herein are effective over wide frequency ranges without causing undesirable amplification at any subrange ranges. Specifically, a system comprises a speaker and a resonator, both coupled to an enclosure. The interior space of the resonator is in fluid communication with the enclosed space of the enclosure, allowing the resonator to reduce the amplitude of unwanted amplification by the audio reducing sound generated by the speaker. The amplitude is reduced in a selected frequency range, which may correspond to an expected amplification for this particular system. The resonator may partially extend into the enclosure or may be completely incorporated into the enclosure. Some examples of the resonator include a Helmholtz resonator, a passive radiator, a quarter wave resonator, a pipe resonator, and an acoustic metamaterial.
Abstract:
Described are methods and systems for broad-band active reduction of noise in target spaces, such as spaces around headrests in aircraft cabins. Systems describe herein are effective over wide frequency ranges without causing undesirable amplification at any subrange ranges. Specifically, a system comprises a speaker and a resonator, both coupled to an enclosure. The interior space of the resonator is in fluid communication with the enclosed space of the enclosure, allowing the resonator to reduce the amplitude of unwanted amplification by the audio reducing sound generated by the speaker. The amplitude is reduced in a selected frequency range, which may correspond to an expected amplification for this particular system. The resonator may partially extend into the enclosure or may be completely incorporated into the enclosure. Some examples of the resonator include a Helmholtz resonator, a passive radiator, a quarter wave resonator, a pipe resonator, and an acoustic metamaterial.
Abstract:
A panel includes a structural substrate and a damping element including a viscoelastic material (VEM) layer coupleable to the structural substrate of the aircraft, and a constraining layer coupled to the VEM layer. The VEM layer is configured to dampen a vibration of the structural substrate. The constraining layer is configured to apply a shear force to the VEM layer.