Abstract:
A process for preparing methanol by a methanol synthesis reaction of carbon dioxide with hydrogen may involve a distillation step and a condensation step following the synthesis of a crude methanol. A volatile component and water may be separated off from a methanol-containing product stream, and a gas stream containing a volatile component that has been separated off may be discharged at least partially as offgas. At least part of the gas stream that has been separated off may be recirculated into the methanol synthesis reaction. A plant for preparing methanol can store or utilize electric power generated from renewable energy sources and provide facilities for discharging the offgas stream, which can be purified by catalytic after-combustion. Alternatively, the plant can be configured without discharge of an offgas substream, or the offgas streams are so small that they can be released without treatment into the environment at a suitable position.
Abstract:
A process for the combined production of methanol and ammonia, wherein a reactant stream includes carbon monoxide is supplied to a recovery assembly to obtain first and second hydrogen-containing streams, each having an increased molar proportion of hydrogen compared to the reactant stream. The recovery assembly includes a shift conversion in which the carbon monoxide of at least one carbon monoxide-containing stream is at least partially converted into hydrogen and carbon dioxide by reaction with steam to obtain a converted stream having hydrogen and carbon dioxide at least partially recycled to a hydrogen recovery from which the first and second hydrogen-containing streams are obtained. A nitrogen stream and, at least partially, the first hydrogen-containing stream are supplied to an ammonia reactor assembly for at least partial conversion into ammonia and, at least partially, the second hydrogen-containing stream is supplied to a methanol reactor assembly for at least partial conversion into the methanol.
Abstract:
A method for synthesizing methanol, wherein a fuel stream containing carbon is supplied to a synthesis gas reactor arrangement to obtain a synthesis gas stream including hydrogen and carbon oxides that is supplied to a first reactor stage of a methanol reactor arrangement for partial conversion into methanol, and is obtained with a generation pressure higher than the synthesis pressure with which the synthesis gas stream is partially converted into methanol. A residue gas stream is obtained from the methanol reactor arrangement, supplied to a recycle compressor and to the methanol reactor arrangement. Before being supplied to the first reactor stage, the synthesis gas stream is supplied to a heat recovery device to recover heat. A recovery stream is supplied to a hydrogen recovery arrangement to obtain an H-recycle stream. The pressure of the unreacted hydrogen is increased before it is supplied again to the first reactor stage.
Abstract:
A method for operating a plant for synthesizing methanol, wherein a synthesis gas flow having hydrogen and carbon oxides is supplied to a synthesis gas compressor of the plant to increase the pressure of the synthesis gas flow. The pressure-increased synthesis gas flow is supplied to a methanol reactor arrangement of the plant for partial conversion to methanol. The plant has a hydrogen recovery arrangement which obtains an H-recycling flow including hydrogen from a recovery flow supplied from the methanol reactor arrangement, which hydrogen is converted at least in part to methanol. Upon failure of the synthesis gas compressor, the synthesis gas flow continues to be supplied to the methanol reactor arrangement for partial conversion to methanol. Following failure of the synthesis gas compressor, a line arrangement of the plant is switched such that the H-recycling flow is adjusted to compensate for a pressure loss in the methanol reactor arrangement.
Abstract:
The present disclosure relates to a method and apparatus for producing dimethyl ether by catalytic dehydration of methanol and by distillation of the dehydration product. The method is characterized in that the catalytic dehydration takes place in at least two reaction stages which are connected in series and of which at least the first reaction stage is operated adiabatically, wherein a cooling of the reaction products takes place at least between the first and the second reaction stages.