Abstract:
A variety of methods and arrangements for determining conditions when an engine-decoupling friction interface may be locked-up during skip-fire operation of an internal combustion engine are described. In some embodiments, the engine-decoupling friction interface is the lockup clutch of a torque converter situated in a powertrain that transmits motive power from the engine to a wheel. Rotation of the wheel causes vehicle motion.
Abstract:
Methods and controllers for controlling engine speed to reduce NVH that occurs in conjunction with transmission shifts are described. In some embodiments, when a transmission shift to a target gear is expected, a target engine speed appropriate for the target gear is first determined. A target rate of change of the engine speed is calculated from the initial engine speed and target engine speed in conjunction with a target transition time. A target torque is then calculated from the target rate of change of engine speed. A target firing fraction or induction ratio are determined that are desired for use with the target engine speed based on the target torque. The transition to the target engine speed and target firing fraction or induction ratio are completed before the gear shift is completed. The described approaches are well suited for use during skip fire or other cylinder output level modulation operation of the engine.
Abstract:
A skip fire engine controller is disclosed that commands an early direct-injection of fuel during a skipped working cycle in which a cylinder is not exhausted. With early direct injection, the fuel has more time to vaporize and mix with air for combustion in an immediately following working cycle in which the cylinder is fired. By increasing the degree of vaporization and mixing, the combustion is both cleaner and more efficient.
Abstract:
Methods and controllers for coordinating firing fraction transitions that occur in conjunction with transmission shifts are described. In one aspect, an engine controller transmits a do-not-shift instruction to a transmission controller based at least in part on a determination that a particular type of firing fraction transition is desired. The firing fraction transition is then implemented using a skip fire transition protocol. In this manner, the transmission is affirmatively prevented from shifting during the firing fraction transition. The described approaches are well suited for use in connection with transitions to DCCO or DFCO operation.
Abstract:
Methods and arrangements for transitioning an engine between a deceleration cylinder cutoff (DCCO) state and an operational state are described. In one aspect, transitions from DCCO begin with reactivating cylinders to pump air to reduce the pressure in the intake manifold prior to firing any cylinders. In another aspect, transitions from DCCO, involve the use of an air pumping skip fire operational mode. After the manifold pressure has been reduced, the engine may transition to either a cylinder deactivation skip fire operational mode or other appropriate operational mode. In yet another aspect a method of transitioning into DCCO using a skip fire approach is described. In this aspect, the fraction of the working cycles that are fired is gradually reduced to a threshold firing fraction. All of the working chambers are then deactivated after reaching the threshold firing fraction.
Abstract:
Techniques and controllers are described for dynamically determining when to request firing decisions for individual firing opportunities while operating an internal combustion engine in a skip fire mode. In one aspect, a skip fire controller is arranged to periodically determine the timing by which a next cylinder firing decision request must be made in order to assure that a corresponding firing decision can be implemented as desired, and whether there is sufficient time to wait until at least the next periodic timing determination is made to request the next cylinder firing decision. When there is not sufficient time to wait, a firing decision request is made and the corresponding working cycle is either skipped or fired based on the received firing decision. When there is sufficient time to wait, the firing decision request is delayed until at least the next periodic timing determination is made.