Abstract:
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a shaft, a first bearing structure and a second bearing structure that support the shaft. Each of the first bearing structure and the second bearing structure includes a bearing compartment that contains a lubricant and a seal that contains the lubricant within the bearing compartments. A buffer system is configured to pressurize the seals to prevent the lubricant from escaping the bearing compartments. The buffer system includes a first circuit configured to supply a first buffer supply air to the first bearing structure, a second circuit configured to supply a second buffer supply air to the second bearing structure, and a controller configured to select between at least two bleed air supplies to communicate the first buffer supply air and the second buffer supply air.
Abstract:
A system for starting a gas turbine engine of an aircraft is provided. The system includes a pneumatic starter motor, a discrete starter valve switchable between an on-state and an off-state, and a controller operable to perform a starting sequence for the gas turbine engine. The starting sequence includes alternating on and off commands to an electromechanical device coupled to the discrete starter valve to achieve a partially open position of the discrete starter valve to control a flow from a starter air supply to the pneumatic starter motor to drive rotation of a starting spool of the gas turbine engine below an engine idle speed.
Abstract:
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a shaft, a first bearing structure and a second bearing structure that support the shaft. Each of the first bearing structure and the second bearing structure includes a bearing compartment that contains a lubricant and a seal that contains the lubricant within the bearing compartments. A buffer system is configured to pressurize the seals to prevent the lubricant from escaping the bearing compartments. The buffer system includes a first circuit configured to supply a first buffer supply air to the first bearing structure, a second circuit configured to supply a second buffer supply air to the second bearing structure, and a controller configured to select between at least two bleed air supplies to communicate the first buffer supply air and the second buffer supply air.
Abstract:
A disclosed lubrication system for a gas turbine engine includes a primary passage defining a flow path for lubricant to a gas turbine engine and a bypass passage defining a flow path for lubricant around the gas turbine engine. The lubrication system further includes a primary lubrication pump including a reduced total flow capacity of lubricant with a reduced bypass lubricant flow relative to the total overall flow capacity.
Abstract:
A system for starting a gas turbine engine of an aircraft is provided. The system includes a pneumatic starter motor, a discrete starter valve switchable between an on-state and an off-state, and a controller operable to perform a starting sequence for the gas turbine engine. The starting sequence includes alternating on and off commands to an electromechanical device coupled to the discrete starter valve to achieve a partially open position of the discrete starter valve to control a flow from a starter air supply to the pneumatic starter motor to drive rotation of a starting spool of the gas turbine engine below an engine idle speed, where the controller modulates a duty cycle of the discrete starter valve via pulse width modulation.
Abstract:
A disclosed lubrication system for a gas turbine engine includes a primary passage defining a flow path for lubricant to a gas turbine engine and a bypass passage defining a flow path for lubricant around the gas turbine engine. The lubrication system further includes a primary lubrication pump including a reduced total flow capacity of lubricant with a reduced bypass lubricant flow relative to the total overall flow capacity.
Abstract:
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a fan section, a shaft including a bearing system, a turbine section in communication with the shaft, a speed change mechanism coupling the fan section to the turbine section and a biasing device configured to apply a biasing force against the shaft.
Abstract:
A gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a compressor section, a combustor in fluid communication with the compressor section and a turbine section in fluid communication with the combustor. A buffer system includes a first circuit that supplies a first buffer supply air and a second circuit that supplies a second buffer supply air. The first circuit includes a first bleed air supply and a second bleed air supply. The second circuit includes a third bleed air supply and a fourth bleed air supply and at least one of the first circuit and the second circuit includes a variable area ejector.
Abstract:
A gas turbine engine compressor section has a hub carrying a last row of compressor blades. A compressor exit guide vane is downstream of the last row of compressor blades. A housing is radially inward of the compressor exit guide vane. A non-contact seal is positioned on one of the housing and the hub.
Abstract:
A turbine section of a gas turbine engine according to an example of the present disclosure includes, among other things, a first turbine section and a second turbine section. The first turbine section has a first exit area and rotates at a first speed. The second turbine section has a second exit area and rotates at a second speed. A first performance quantity is defined as the product of the first speed squared and the first exit area. A second performance quantity is defined as the product of the second speed squared and the second exit area.