Abstract:
A seal assembly includes a housing at least partially defining a seal opening and at least partially surrounding a rotatable shaft. A carbon seal is located at least partially in the seal opening and includes a sealing surface. The rotatable shaft includes a radially facing surface that has a carbide based coating and a diamond-like carbon coating in engagement with the sealing surface on the carbon seal.
Abstract:
A seal housing may comprise an aft flange, an outer diameter (OD) ring and a stopper. The stopper may extend radially inward from a radially inner surface of OD ring. The stopper may be configured to interface with a monobloc carbon seal. The stopper may comprise a circumferential stopping portion and an axial stopping portion. There may be a plurality of the stopper.
Abstract:
A bearing assembly according to an example of the present disclosure includes, among other things, a bearing situated in a bearing compartment, a seal assembly that defines the bearing compartment, at least one deflector between the bearing and the seal assembly that is rotatable about an axis, and a coalescer at least partially extending about the at least one deflector to define a fluid passage. A method of sealing is also disclosed.
Abstract:
A rolling element bearing includes a plurality of rolling elements, a bearing inner ring and a bearing outer ring. The rolling elements are arranged circumferentially around an axis, and radially between the inner ring and the outer ring. The inner ring includes a plurality of first passages, a second passage and a channel that extends axially into the inner ring. The first passages are arranged circumferentially around the axis. The first passages respectively extend axially through the inner ring from a plurality of first passage inlets to the channel. The second passage includes a second passage inlet that is substantially axially aligned with one of the first passage inlets. The second passage extends radially through the inner ring to a second passage outlet.
Abstract:
A turbine engine includes a main shaft bearing compartment seal. The seal includes at least an approximately circular seal portion and a seal carrier disposed about the approximately circular seal portion. A plurality of anti-rotation pins maintain the seal carrier in position relative to a housing and are received in an anti-rotation slot of the seal carrier.
Abstract:
A bearing assembly according to an example of the present disclosure includes, among other things, a bearing situated in a bearing compartment, a seal assembly that defines the bearing compartment, at least one deflector between the bearing and the seal assembly that is rotatable about an axis, and a coalescer at least partially extending about the at least one deflector to define a fluid passage. A method of sealing is also disclosed.
Abstract:
A seal assembly for a rotatable component having an axis of rotation. The seal assembly may include a first seal mounted to a housing and configured to be in sealing engagement with the rotatable component, a second seal mounted to the housing an axial distance apart from the first seal and configured to be in sealing engagement with the rotatable component, wherein the axial distance is parallel with the axis of rotation, a buffer fluid chamber defined between the first seal and the second seal, and a buffer fluid inlet in fluid providing communication with the buffer fluid chamber.
Abstract:
A seal assembly for a rotatable component having an axis of rotation. The seal assembly may include a first seal mounted to a housing and configured to be in sealing engagement with the rotatable component, a second seal mounted to the housing an axial distance apart from the first seal and configured to be in sealing engagement with the rotatable component, wherein the axial distance is parallel with the axis of rotation, a buffer fluid chamber defined between the first seal and the second seal, and a buffer fluid inlet in fluid providing communication with the buffer fluid chamber.
Abstract:
Aspects of the disclosure are directed to an apparatus comprising a first section, and a second section coupled to the first section, wherein the second section is configured to substantially coincide with an edge of a seal and includes a pre-tapered edge.
Abstract:
A rolling element bearing includes a plurality of rolling elements, a bearing inner ring and a bearing outer ring. The rolling elements are arranged circumferentially around an axis, and radially between the inner ring and the outer ring. The inner ring includes a plurality of first passages, a second passage and a channel that extends axially into the inner ring. The first passages are arranged circumferentially around the axis. The first passages respectively extend axially through the inner ring from a plurality of first passage inlets to the channel. The second passage includes a second passage inlet that is substantially axially aligned with one of the first passage inlets. The second passage extends radially through the inner ring to a second passage outlet.