Abstract:
A gas turbine engine has an inlet duct formed to have a shape with a first ellipse in one half and a second ellipse in a second half. The second half has an upstream most end which is smaller than the first ellipse. The inlet duct has a surface defining the second ellipse which curves away from the first ellipse, such that the second ellipse is larger at an intermediate location. The second ellipse is even larger at a downstream end of the inlet duct leading into a fan.
Abstract:
An inlet for a propulsion system has an upper wall and a lower wall and a throat extending between the upper wall and the lower wall. The lower wall has a bump edge located immediately after the throat.
Abstract:
A hybrid wing aircraft has an engine embedded into a body of the hybrid wing aircraft. The embedded engine has a fan that is received within a nacelle. The body of the aircraft provides a boundary layer over a circumferential portion of a fan. A system delivers additional air to correct fan stability issues raised by the boundary layer.
Abstract:
A gas turbine engine propulsion system and method of assembling such is disclosed. The gas turbine engine propulsion system comprises a gas turbine engine that includes a fan flow path. The fan flow path may extend from the fan inlet to the rear exhaust outlet of the bypass flow path. A portion of the fan flow path, proximal to the fan, is non-axisymmetric. The non-axisymmetric portion may be upstream or downstream of the fan.
Abstract:
A gas turbine engine has an inlet duct formed to have a shape with a first ellipse in one half and a second ellipse in a second half. The second half has an upstream most end which is smaller than the first ellipse. The inlet duct has a surface defining the second ellipse which curves away from the first ellipse, such that the second ellipse is larger at an intermediate location. The second ellipse is even larger at a downstream end of the inlet duct leading into a fan.
Abstract:
An exit nozzle section for an engine has an outer wall and an inner wall, and a plurality of exit guide vanes extending between the outer wall and the inner wall. Different ones of the exit guide vanes having different cambers in different regions of the exit nozzle section.
Abstract:
A hybrid wing aircraft has an engine embedded into a body of the hybrid wing aircraft. The embedded engine has a fan that is received within a nacelle. The body of the aircraft provides a boundary layer over a circumferential portion of a fan. A system delivers additional air to correct fan stability issues raised by the boundary layer.
Abstract:
A hybrid wing aircraft has an engine embedded into a body of the hybrid wing aircraft. The embedded engine has a fan that is received within a nacelle. The body of the aircraft provides a boundary layer over a circumferential portion of a fan. A system delivers additional air to correct fan stability issues raised by the boundary layer.
Abstract:
In accordance with one aspect of the disclosure, an airfoil is disclosed. The airfoil may include a platform and a blade extending from the platform. The blade may have a root proximate the platform and a tip radially outward from the platform. The root may have a greater thickness than a cross-section at about a quarter-span of the blade or greater.