Abstract:
Organometallic compounds comprising an imidazole carbene ligand having a N-containing ring fused to the imidazole ring are provided. In particular, the N-containing ring fused to the imidazole ring may contain one nitrogen atom or more than one nitrogen atom. These compounds may demonstrate high photoluminescent (PL) efficiency, Gaussian emission spectra, and/or short excited state lifetimes. These materials may be especially useful as blue phosphorescent emitters.
Abstract:
An OLED containing an emissive dopant that is a heteroleptic complex having the formula Ir(LA-B)2(LC-D) is disclosed. In the formula, LA-B is and LC-D can be selected from
Abstract:
Compounds are provided that comprise a ligand having a 5-substituted 2-phenylquinoline. In particular, the 2-phenylquinoline may be substituted with a cycloalkyl containing group at the 5-position. These compounds may be used in organic light emitting devices, in particular as red emitters in the emissive layer of such devices, to provide devices having improved properties.
Abstract:
Methods of making novel organic compounds containing a twisted aryl group are provided. In particular, the compounds provided contain a 2-phenylpyridine ligand having a twisted aryl group on the pyridine portion of the ligand. The compounds may be used in organic light emitting devices, particularly as emitting dopants. Devices comprising the compounds containing twisted aryl may demonstrate improved color, efficiency, stability and manufacturing.
Abstract:
A compound having the structure of Formula I is disclosed. In the structure of Formula I, each of R1, R2, and R3 is independently a hydrogen, a non-fused aryl group having one meta-substituent, or a non-fused heteroaryl six-membered ring having one or more meta-substituents; each meta-substituent is a non-fused aryl or non-fused heteroaryl six-membered ring optionally substituted with further substituents selected from the group consisting of non-fused aryl groups, non-fused heteroaryl groups, and alkyl groups; and at least one of R1, R2, and R3 is a non-fused aryl having one meta-substituent or a heteroaryl six-membered ring having at least one meta-substituent, wherein each meta-substituent is a non-fused aryl or non-fused heteroaryl group further substituted with a chain of at least two non-fused aryl or non-fused heteroaryl groups. The compounds may be useful in phosphorescent organic light emitting devices.
Abstract:
Compounds are provided that comprise a ligand having a 5-substituted 2-phenylquinoline. In particular, the 2-phenylquinoline may be substituted with a cycloalkyl containing group at the 5-position. These compounds may be used in organic light emitting devices, in particular as red emitters in the emissive layer of such devices, to provide devices having improved properties.
Abstract:
Organometallic compounds comprising an imidazole carbene ligand having a N-containing ring fused to the imidazole ring are provided. In particular, the N-containing ring fused to the imidazole ring may contain one nitrogen atom or more than one nitrogen atom. These compounds may demonstrate high photoluminescent (PL) efficiency, Gaussian emission spectra, and/or short excited state lifetimes. These materials may be especially useful as blue phosphorescent emitters.
Abstract:
Homoleptic organometallic iridium complexes formed from bidentate substitute phenylpyridine ligands are disclosed. Devices containing the homoleptic organometallic iridium complexes that exhibit improved device manufacturing, fabrication, stability, efficiency, and/or color are also disclosed.
Abstract:
Disclosed is a compound having substructure F: wherein R′1 is a straight or branched chain of two or more non-fused aryl or non-fused heteroaryl groups substituted with Ra, wherein Ra is a non-fused aryl or non-fused heteroaryl, a branched or straight chain of non-fused aryl or a non-fused heteroaryl, or an alkyl substituted non-fused aryl or an alkyl substituted non-fused heteroaryl group. The compounds may be useful in phosphorescent organic light emitting devices.
Abstract:
Iridium complexes with ligands containing twisted aryl groups having extended conjugation (i.e., the twisted aryl is substituted with an additional aryl group) and organic light emitting devices including the same are disclosed. The iridium complexes can be used in organic light emitting devices may provide improved stability color, lifetime and manufacturing.