Multi-level gate driver applied to SiC MOSFET

    公开(公告)号:US12199150B2

    公开(公告)日:2025-01-14

    申请号:US17848422

    申请日:2022-06-24

    Abstract: A multi-level gate driver applied to the SiC metal-oxide-semiconductor field-effect transistor (MOSFET) includes three parts: the SiC MOSFET information detection circuit, the signal level shifting circuit, and the segmented driving circuit. The SiC MOSFET information detection circuit includes the SiC MOSFET drain-source voltage detection circuit and the SiC MOSFET drain-source current detection circuit. The segmented driving circuit includes a turn-on segmented driving circuit and a turn-off segmented driving circuit. The SiC MOSFET drain-source voltage detection circuit and the SiC MOSFET drain-source current detection circuit process a drain-source voltage and a drain-source current during the SiC MOSFET's switching as enable signals for segmented driving; the signal level shifting circuit transfers enable signals required by the segmented driving circuit to the suitable power supply rail; and the SiC MOSFET turn-on segmented driving circuit and the turn-off segmented driving circuit select suitable driving currents.

    Transient response enhancement circuit for buck-type voltage converters

    公开(公告)号:US10924002B2

    公开(公告)日:2021-02-16

    申请号:US16676470

    申请日:2019-11-07

    Abstract: A transient response enhancement circuit for buck-type voltage converters, wherein, the transient load changing detecting module detects the output voltage of the buck-type voltage converter. The first control signal is generated when the increase of the output voltage is detected, and the second control signal is generated when the decrease of the output voltage is detected, thereby self-adaptively detecting the time of the buck-type voltage converter in response to the load changing. The compensation voltage predicting operation module predicts and adjusts the compensation voltage and the adjusted compensation voltage is superimposed on the buck-type voltage converter through the internal active compensation module to adjust the duty ratio of the buck-type voltage converter. The drive controlling insertion logic module can further improve the response speed.

    Adaptive control method for zero voltage switching

    公开(公告)号:US10374506B1

    公开(公告)日:2019-08-06

    申请号:US16174307

    申请日:2018-10-30

    Abstract: An adaptive control method for zero voltage switching belongs to the field of integrated circuit. In the present invention, the difference between the turn-on time of the power tube and the time of the lowest drain voltage of the power tube in the switching cycle is quantified by the reversible counter, and the quantized result is transmitted to the next switching cycle to adjust the turn-on time of the power tube through the final count result of the reversible counter, so that the power tube after being adjusted can be turned on when the drain voltage of the power tube is the lowest, thus reducing the switching loss. The present invention can adaptively turn on the power tube when the drain voltage of the power tube reaches minimum, thus, realizing the zero-voltage switching, reducing the switching loss of the switching power supply, widening the application range.

    Sub-threshold low-power-resistor-less reference circuit

    公开(公告)号:US10042379B1

    公开(公告)日:2018-08-07

    申请号:US15867717

    申请日:2018-01-11

    Abstract: A sub-threshold low-power and resistor-less reference circuit which is related to the field of reference circuit technology of analog circuit includes a negative-temperature-coefficient voltage generating circuit, a positive-temperature-coefficient voltage generating circuit and a current balancing circuit. The negative-temperature-coefficient voltage generating circuit generates a negative-temperature-coefficient voltage VCTAT based on the negative-temperature voltage characteristic of base-emitter PN junction of the bipolar tsansistor. On the other hand, the positive-temperature-coefficient voltage generating circuit generates a positive-temperature-coefficient voltage VPTAT based on the positive-temperature voltage characteristic of the NMOS transistor operating in a sub-threshold region. The current balancing circuit is configured to eliminate the error current caused due to the difference of the current mirror when the two voltages with different temperature characteristics are superposed to output a reference voltage.

Patent Agency Ranking