Damping of in-plane vibrations in multi-rotor structures

    公开(公告)号:US11841005B2

    公开(公告)日:2023-12-12

    申请号:US17758653

    申请日:2021-01-12

    CPC classification number: F03D7/0296 F03D1/02 F03D7/0224 F05B2270/807

    Abstract: Embodiments herein describe in-plane vibration damping techniques for MR turbines. The MR turbines can include arms that extend from a common tower and support multiple rotors. Because the rotors are disposed laterally away from the tower, side-to-side motion of the tower causes the rotors to have an angled trajectory that includes both lateral and vertical displacement. In addition, a rotor disposed on one side of the tower in MR turbine can have a very different trajectory than a rotor disposed on the opposite side of the tower. To account for the vertical displacement and the different trajectories, in one embodiment, a controller can use different phase offsets for each rotor when calculating pitch offsets for performing in-plane vibration damping. In another embodiment, the controller can use both the lateral and vertical accelerations of the rotors to identify the pitch offsets for the rotors to perform in-plane vibration damping.

    A MULTIPLE ROTOR RAIL PULLEY SYSTEM

    公开(公告)号:US20230010831A1

    公开(公告)日:2023-01-12

    申请号:US17782225

    申请日:2020-12-11

    Abstract: A multiple rotor (MR) wind turbine comprising a tower (21) extending in an upwards direction, a load carrying structure (22) extending in an outwards direction and being fixed to the tower, and an energy generating unit (54) fixed to the load carrying structure, wherein the outwards direction is transverse to the upwards direction, the wind turbine further comprising a hoisting line (53) for communication of objects (52) to and from the energy generating unit (54), the hoisting line being windable from an attachment point (55) of the load carrying structure or from the energy generating unit. To allow positioning of hosted objects near the tower, or at selectable distance from the tower, the hoisting line extends from the attachment point via a suspension point (56) to a lifting point (57) where the object (52) can be attached, and the suspension point (56) is movable outside the load carrying structure.

    WIND TURBINE BLADES AND MANUFACTURING SYSTEMS AND METHODS USING SEGMENTED BLADE ASSEMBLY

    公开(公告)号:US20210088025A1

    公开(公告)日:2021-03-25

    申请号:US16956027

    申请日:2018-12-13

    Abstract: A system (24) and method are described herein for manufacturing a wind turbine blade (22) proximate to the final installation site of a wind turbine (10). The system (24) includes a creel (72) of feeders (74) configured to apply strengthening elements (62) onto a plurality of shell core sections (26) coupled together and fed through the creel (72). The shell core sections (26) include an external surface (56) with a plurality of external grooves (58) recessed into the external surface (56) such that the strengthening elements (62) are laid into the external grooves (58). The system (24) also includes a deposition station (78) configured to apply an outer surface material layer (82) in fluid form to cover the external surface (56) and the plurality of strengthening elements (62). A curing station (86) heats and consolidates the shell core sections (26), the strengthening elements (62), and the outer surface material layer (82) together into a final consolidated part, with the outer surface material layer (82) defining an external profile of the blade (22) following curing.

    Wind turbine blades and manufacturing systems and methods using segmented blade assembly

    公开(公告)号:US11499523B2

    公开(公告)日:2022-11-15

    申请号:US16956027

    申请日:2018-12-13

    Abstract: A system (24) and method are described herein for manufacturing a wind turbine blade (22) proximate to the final installation site of a wind turbine (10). The system (24) includes a creel (72) of feeders (74) configured to apply strengthening elements (62) onto a plurality of shell core sections (26) coupled together and fed through the creel (72). The shell core sections (26) include an external surface (56) with a plurality of external grooves (58) recessed into the external surface (56) such that the strengthening elements (62) are laid into the external grooves (58). The system (24) also includes a deposition station (78) configured to apply an outer surface material layer (82) in fluid form to cover the external surface (56) and the plurality of strengthening elements (62). A curing station (86) heats and consolidates the shell core sections (26), the strengthening elements (62), and the outer surface material layer (82) together into a final consolidated part, with the outer surface material layer (82) defining an external profile of the blade (22) following curing.

Patent Agency Ranking