摘要:
A method, apparatus, and computer instructions for managing a set of signal paths for a chip. A defective signal path within the set of signal paths for the chip is detected. Signals are re-routed through the set of signal paths such that the defective signal path is removed from the set of signal paths and sending signals using remaining data signal paths in the set of signal paths and using an extra signal path in response to detecting the defective signal path.
摘要:
A method, apparatus, and computer instructions for managing a set of signal paths for a chip. A defective signal path within the set of signal paths for the chip is detected. Signals are re-routed through the set of signal paths such that the defective signal path is removed from the set of signal paths and sending signals using remaining data signal paths in the set of signal paths and using an extra signal path in response to detecting the defective signal path.
摘要:
A method, apparatus, and computer instructions for managing a set of signal paths for a chip. A defective signal path within the set of signal paths for the chip is detected. Signals are re-routed through the set of signal paths such that the defective signal path is removed from the set of signal paths and sending signals using remaining data signal paths in the set of signal paths and using an extra signal path in response to detecting the defective signal path.
摘要:
A method, apparatus, and computer instructions for managing a set of signal paths for a chip. A defective signal path within the set of signal paths for the chip is detected. Signals are re-routed through the set of signal paths such that the defective signal path is removed from the set of signal paths and sending signals using remaining data signal paths in the set of signal paths and using an extra signal path in response to detecting the defective signal path.
摘要:
Data busses are configured as N differential channels driven by a data signal and its complement through two off-chip drivers (OCDs). Each OCD is preceded by a programmable delay element and a two way MUX. The two data channels either transmit the data signals or a common clock signal as determined by a select signal from a skew controller. The differential signals are received in a differential receiver and a phase detector. The output of the phase detector in each differential channel is routed through an N×1 MUX. The N×1 MUX is controlled by the skew controller. The output of the N×1 MUX is fed back as a phase error feedback signal to the skew controller. Each differential data channel is sequentially selected and the programmable delays are adjusted until the phase error feedback signal from the selected phase detector reaches a predetermined minimum allowable value. Periodic adjustment may be implemented for calibration.
摘要:
A first clock signal of frequency F is used to couple data to an off-chip driver (OCD) using a master/slave flip flop (FF), wherein the master latch is clocked with the first clock signal and the slave latch is clocked with the complement of the first clock signal. A second clock signal of frequency F/2 is generated from the first clock signal. The second clock signal is shifted a time equal to substantially one-half the cycle of the first clock signal. In one embodiment, the second clock is shifted using a delay line circuit. In another embodiment, the second clock is shifted using a master/slave FF, wherein the master latch is clocked with the complement of the first clock signal and the slave latch is clocked with the first clock signal. The logic state transitions of the data between edges of the propagating clock thereby reducing coupling to the clock transitions and thus reducing edge jitter.
摘要:
A first clock signal of frequency F is used to couple data to an off-chip driver (OCD) using a master/slave flip flop (FF), wherein the master latch is clocked with the first clock signal and the slave latch is clocked with the complement of the first clock signal. A second clock signal of frequency F/2 is generated from the first clock signal. The second clock signal is shifted a time equal to substantially one-half the cycle of the first clock signal. In one embodiment, the second clock is shifted using a delay line circuit. In another embodiment, the second clock is shifted using a master/slave FF, wherein the master latch is clocked with the complement of the first clock signal and the slave latch is clocked with the first clock signal. The logic state transitions of the data between edges of the propagating clock thereby reducing coupling to the clock transitions and thus reducing edge jitter.
摘要:
A first clock signal of frequency F is used to couple data to an off-chip driver (OCD) using a master/slave flip flop (FF), wherein the master latch is clocked with the first clock signal and the slave latch is clocked with the complement of the first clock signal. A second clock signal of frequency F/2 is generated from the first clock signal. The second clock signal is shifted a time equal to substantially one-half the cycle of the first clock signal. In one embodiment, the second clock is shifted using a delay line circuit. In another embodiment, the second clock is shifted using a master/slave FF, wherein the master latch is clocked with the complement of the first clock signal and the slave latch is clocked with the first clock signal. The logic state transitions of the data between edges of the propagating clock thereby reducing coupling to the clock transitions and thus reducing edge jitter.
摘要:
A first clock signal of frequency F is used to couple data to an off-chip driver (OCD) using a master/slave flip flop (FF), wherein the master latch is clocked with the first clock signal and the slave latch is clocked with the complement of the first clock signal. A second clock signal of frequency F/2 is generated from the first clock signal. The second clock signal is shifted a time equal to substantially one-half the cycle of the first clock signal. In one embodiment, the second clock is shifted using a delay line circuit. In another embodiment, the second clock is shifted using a master/slave FF, wherein the master latch is clocked with the complement of the first clock signal and the slave latch is clocked with the first clock signal. The logic state transitions of the data between edges of the propagating clock thereby reducing coupling to the clock transitions and thus reducing edge jitter.
摘要:
An improved data driver, method, and system for driving data with an improved slew rate and eye opening is provided. In one embodiment, the data driver includes a non-precompensating data driver and a precompensating data driver. The non-precompensating driver generates a non-precompensating output data pulse corresponding to input data. The non-precompensating data driver generates a pulse in response to every input data bit received. The precompensating driver generates the precompensating pulse only in response to a transition from one data state to a second data state between consecutive data bits. The precompensating data pulse is shorter in duration than the non-precompensating output data. The output data from the data drive is the sum of the non-precompensating output data pulse and the precompensating output data pulse.