摘要:
Disclosed is an organic photoelectric conversion element having high photoelectric conversion efficiency and high durability. Also disclosed are a solar cell and an optical sensor array, each using the organic photoelectric conversion element The organic photoelectric conversion element comprises a bulk heterojunction layer wherein an n-type semiconductor material and a p-type semiconductor material are mixed. The organic photoelectric conversion element is characterized in that the n-type semiconductor material is a polymer compound and the p-type semiconductor material is a low-molecular-weight compound.
摘要:
Disclosed is an organic photoelectric conversion element which has excellent photoelectric conversion efficiency and excellent temperature stability with respect to power generation. The organic photoelectric conversion element comprises at least one photoelectric conversion layer and at least one carrier transport layer between a first electrode and a second electrode, and is characterized in that the carrier transport layer contains the salt of an alkali metal or an alkaline earth metal or the complex thereof of an alkali metal or an alkaline earth metal.
摘要:
Provided is an organic photoelectric conversion element having a high photoelectric conversion ratio. Provided is also a method for manufacturing an organic photoelectric conversion element which can significantly reduce the manufacturing cost by forming a transparent electrode and an organic generation layer portion by coating a material. The organic photoelectric conversion element includes on a transparent substrate, a first electrode unit having a transparent conductive layer, an organic generation unit, and a second electrode unit which are successively arranged in this order when viewed from the transparent substrate. The transparent conductive layer constituting the first electrode unit contains conductive fiber and transparent conductive material.
摘要:
Provided is a lightweight flexible lighting device with excellent durability and stable performance over repeated use that combines an organic electroluminescent element, an organic photoelectric conversion element, and a secondary cell. The lighting device has a control means for controlling the electrical connections of the organic electroluminescent element, the organic photoelectric conversion element, and the secondary cell. The control means controls the electrical connections such that a reverse bias voltage is applied to the organic electroluminescent element when the organic electroluminescent element receives light, generates power, and charges the secondary cell, and such that a reverse bias voltage is applied to the organic photoelectric conversion element when the organic electroluminescent element is supplied with power from the secondary cell and emits light.
摘要:
Provided is an organic photoelectric conversion element having a high photoelectric conversion ratio. Provided is also a method for manufacturing an organic photoelectric conversion element which can significantly reduce the manufacturing cost by forming a transparent electrode and an organic generation layer portion by coating a material. The organic photoelectric conversion element includes on a transparent substrate, a first electrode unit having a transparent conductive layer, an organic generation unit, and a second electrode unit which are successively arranged in this order when viewed from the transparent substrate. The transparent conductive layer constituting the first electrode unit contains conductive fiber and transparent conductive material.
摘要:
Provided is a lightweight flexible lighting device with excellent durability and stable performance over repeated use that combines an organic electroluminescent element, an organic photoelectric conversion element, and a secondary cell. The lighting device has a control means for controlling the electrical connections of the organic electroluminescent element, the organic photoelectric conversion element, and the secondary cell. The control means controls the electrical connections such that a reverse bias voltage is applied to the organic electroluminescent element when the organic electroluminescent element receives light, generates power, and charges the secondary cell, and such that a reverse bias voltage is applied to the organic photoelectric conversion element when the organic electroluminescent element is supplied with power from the secondary cell and emits light.
摘要:
Disclosed is an organic photoelectric conversion element having high photoelectric conversion efficiency and high durability. Also disclosed are a solar cell and an optical sensor array, each using the organic photoelectric conversion element. The organic photoelectric conversion element comprises a bulk heterojunction layer wherein an n-type semiconductor material and a p-type semiconductor material are mixed. The organic photoelectric conversion element is characterized in that the n-type semiconductor material is a polymer compound and the p-type semiconductor material is a low-molecular-weight compound.
摘要:
Provided is an organic photoelectric conversion element containing: a first electrode; a second electrode; and an organic photoelectric conversion layer sandwiched between the first electrode and the second electrode, wherein the first electrode comprises: a conductive fiber layer; and a transparent conductive layer containing a conductive polymer comprising a π conjugated conductive polymer and a polyanion, and an aqueous binder, and at least a part of the transparent conductive layer containing the conductive polymer and the aqueous binder is cross-linked therein.
摘要:
Disclosed is an organic photoelectric conversion element which has excellent photoelectric conversion efficiency and excellent temperature stability with respect to power generation. The organic photoelectric conversion element comprises at least one photoelectric conversion layer and at least one carrier transport layer between a first electrode and a second electrode, and is characterized in that the carrier transport layer contains the salt of an alkali metal or an alkaline earth metal or the complex thereof of an alkali metal or an alkaline earth metal.
摘要:
A tandem-type organic photoelectric conversion element has at least a first electrode, a second electrode, and a plurality of bulk heterojunction layers each comprising a p-type organic semiconductor material and an n-type organic semiconductor material. The tandem-type organic photoelectric conversion element and a solar battery are characterized in that when the absorption wavelengths of the bulk heterojunction layers are such that a second bulk heterojunction layer absorbs up to a longer wavelength than a first bulk heterojunction layer, the LUMO energy level (LUMO(n1)) of the film of the n-type semiconductor in the first bulk heterojunction layer and the LUMO energy level (LUMO(n2)) of the film of the n-type semiconductor in the second bulk heterojunction layer satisfy the following equation (1): 0.4 eV≧LUMO(n1)−LUMO(n2)≧0.1 eV . . . (1)