摘要:
According to an embodiment, a photodetector includes a first photoelectric conversion element, a second photoelectric conversion element, and an absorption layer. The first photoelectric conversion element includes a first photoelectric conversion layer for converting energy of radiation into electric charges. The second photoelectric conversion element includes a second photoelectric conversion layer for converting energy of radiation into electric charges. The absorption layer is arranged between the first photoelectric conversion element and the second photoelectric conversion element to absorb radiation having energy equal to or lower than a threshold value.
摘要:
An infrared photodetector including a stack of layers on a substrate having an active area made of organic semiconductor materials capable of converting an infrared radiation into an electric signal and including, in said stack and/or on the substrate, a single layer at least partially filtering visible light.
摘要:
An organic photodetector for detecting infrared, visible and ultraviolet radiation is provided with a tunable spectral response to achieve a high responsivity at different design wavelengths. The organic photodetector comprises at least a substrate, a first electrode, a second electrode and at least one organic material, which is arranged between the first and the second electrodes, wherein a Schottky barrier is formed at the interface between the first electrode and the organic material and/or at the interface between the second electrode and the organic material. The tunability in the responsivity of the organic photodetector is achieved by structuring at least one electrode so that it comprises nano-apertures for exciting surface plasmon resonances.
摘要:
Various embodiment include optical and optoelectronic devices and methods of making same. Under one aspect, an optical device includes an integrated circuit having an array of conductive regions, and an optically sensitive material over at least a portion of the integrated circuit and in electrical communication with at least one conductive region of the array of conductive regions. Under another aspect, a film includes a network of fused nanocrystals, the nanocrystals having a core and an outer surface, wherein the core of at least a portion of the fused nanocrystals is in direct physical contact and electrical communication with the core of at least one adjacent fused nanocrystal, and wherein the film has substantially no defect states in the regions where the cores of the nanocrystals are fused. Additional devices and methods are described.
摘要:
Systems and methods for transparent organic photovoltaic devices are provided. In one embodiment, an organic semiconductor device comprises: a first glass sheet comprising a first ultra-thin flexible glass material; at least one transparent organic photovoltaic cell bound to the first glass sheet; and a second glass sheet applied to the at least one organic photovoltaic cell, wherein the at least one transparent organic photovoltaic cell is positioned between the first glass sheet and the second glass sheet.
摘要:
The present invention provides a photoelectric conversion element having a photoelectric conversion film which exhibits excellent photoelectric conversion efficiency and responsiveness, an imaging device, an optical sensor, and a method of using a photoelectric conversion element. In the photoelectric conversion element of the invention, a photoelectric conversion material contains at least one selected from the group consisting of a compound represented by General formula (1), a compound represented by General formula (2), and a compound represented by General formula (3).
摘要:
The present invention provides of a three-dimensional bicontinuous heterostructure, a method of producing same, and the application of this structure towards the realization of photodetecting and photovoltaic devices working in the visible and the near-infrared. The three-dimensional bicontinuous heterostructure includes two interpenetrating layers which are spatially continuous, they are include only protrusions or peninsulas, and no islands. The method of producing the three-dimensional biocontinuous heterostructure relies on forming an essentially planar continuous bottom layer of a first material; forming a layer of this first material on top of the bottom layer which is textured to produce protrusions for subsequent interpenetration with a second material, coating this second material onto this structure; and forming a final coating with the second material that ensures that only the second material is contacted by subsequent layer. One of the materials includes visible and/or infrared-absorbing semiconducting quantum dot nanoparticles, and one of materials is a hole conductor and the other is an electron conductor.
摘要:
A double-cantilever infrared detector based on single walled carbon nanotube and the manufacture method thereof are provided. The detector comprises: a substrate having a detection window extending through the substrate from the top surface to the bottom surface; two heterogeneous cantilevers, wherein each cantilever is located on the substrate and has a fixed end connected to the substrate and a free end suspended above the detection window; a single walled carbon nanotube film bridged between the two free ends of the two heterogeneous composite cantilevers, wherein the heterogeneous cantilevers include a first material layer and a second material layer located thereon, and the first material layer and the second material layer have different thermal expansion coefficients.
摘要:
Embodiments of the invention are directed to IR photodetectors with gain resulting from the positioning of a charge multiplication layer (CML) between the cathode and the IR sensitizing layer of the photodetector, where accumulating charge at the CML reduces the energy difference between the cathode and the CML to promote injection of electrons that result in gain for an electron only device. Other embodiments of the invention are directed to inclusion of the IR photodetectors with gain into an IR-to-visible up-conversion device that can be used in night vision and other applications.
摘要:
A single-walled carbon nanotube-based planar photodetector includes a substrate; a first electrode and a second electrode disposed on the substrate and spaced apart from each other; a plurality of single-walled carbon nanotubes, each of the plurality of single-walled carbon nanotubes contacting the first electrode and the second electrode; and an adsorbent attached to a surface of at least one of the plurality of single-walled carbon nanotubes, wherein the adsorbent is capable of doping the at least one of the plurality of single-walled carbon nanotubes by photo-excitation.