Abstract:
A synchronization system for detecting asymmetry of optical fibres is provided, which includes a time synchronization correction device, a time delay compensation unit and an optical module device, wherein the optical module device is configured to detect a pulse transmission time delay difference and an asymmetry distance of bidirectional optical fibres between network elements on two sides and to obtain an asymmetry time delay of the bidirectional optical fibres according to the asymmetry distance of the bidirectional optical fibres and the pulse transmission time delay difference. A synchronization method for detecting asymmetry of optical fibres is also provided, which includes obtaining an asymmetry time delay of bidirectional optical fibres according to an asymmetry distance of the bidirectional optical fibres and a pulse transmission time delay difference. A master optical module device and a slave optical module device for detecting asymmetry of optical fibres are also provided.
Abstract:
A time synchronization method, a time synchronization sender, a time synchronization receiver and a time synchronization system are provided. The method includes: determining whether at least one parameter causing recalculation of a best master clock (BMC) algorithm changes; in a case where it is determined that the parameter changes, sending a 1588 standard-based Announce message; and in a case where it is determined that the parameter does not change, sending a keep-alive message of the Announce message. In the present disclosure, by distinguishing keep-alive messages from protocol messages, the problem that a CPU system is busy due to the processing of Announce messages is solved, thereby realizing the optimization of the 1588 protocol, and reducing the impact on the CPU.
Abstract:
A time synchronization apparatus and method for automatically detecting the asymmetry of an optical fiber. The apparatus comprises an OTDR asymmetry detecting module (12), a time delay compensating module (14) and a time synchronization correcting module (16), the OTDR asymmetry detecting module (12) comprises an emitting unit (122) used for emitting a detection signal to the optical fiber, a receiving unit (124) used for receiving the detection signal returned by the optical fiber, a transmission time delay determining unit (126) used for determining the transmission time delay of the detection signal in the optical fiber according to the time difference between the emitting detection signal and the returned detection signal, and the determining transmission time delay of a service signal in the optical fiber according to the transmission time delay of the detection signal; The time delay compensating module (14) is used for calculating asymmetric time delay value between the first optical fiber and the second optical fiber according to the transmission time delay of the first optical fiber and the transmission time delay of the second optical fiber; The time synchronization correcting module (16) is used for synchronization correcting time according to the asymmetry time delay. The apparatus and method can improve the time synchronism precision.
Abstract:
A synchronization system for detecting asymmetry of optical fibers is provided, which includes a time synchronization correction device, a time delay compensation unit and an optical module device, wherein the optical module device is configured to detect a pulse transmission time delay difference and an asymmetry distance of bidirectional optical fibers between network elements on two sides and to obtain an asymmetry time delay of the bidirectional optical fibers according to the asymmetry distance of the bidirectional optical fibers and the pulse transmission time delay difference. A synchronization method for detecting asymmetry of optical fibers is also provided, which includes obtaining an asymmetry time delay of bidirectional optical fibers according to an asymmetry distance of the bidirectional optical fibers and a pulse transmission time delay difference. A master optical module device and a slave optical module device for detecting asymmetry of optical fibers are also provided.
Abstract:
Disclosed are a time synchronization method and system. The method comprises: an NE1 and the upstream nodes of the NE1 are classified into the first level, and the downstream nodes of the NE1 are classified into the second level, where the first level priority of the first level is higher than the second level priority of the second level; an NE3 connected to the NE1 through a PTP synchronization link in the downstream node receives a first device priority of the NE1 and the first level priority from the NE1; and after the NE3 receives the second device priority of an NE2 and the second level priority sent by the NE2 in the downstream nodes which is connected to the NE1 through the 1PPS+TOD synchronization link, determines that a clock parameter of the NE1 is optimal, and synchronizes the local clock to the NE1.
Abstract:
The present application discloses a method for determining time information, including: detecting a signal of a periodic block, and recording a timestamp of the periodic block; and determining a time at which a time information message to be sent according to the timestamp of the periodic block matched with the time information message, and generating a timestamp of the time information message. The present application further discloses an apparatus and device for determining time information, and a storage medium.
Abstract:
The present document discloses a synchronization method, herein the method includes a controller determining synchronization link topology information according to physical link topology information of the synchronous network and synchronization information of a synchronous node in the synchronous network; the controller generating a synchronization rule of the synchronous node according to the synchronization link topology information; and the controller transmitting the synchronization rule and/or a request message to the synchronous node in the synchronous network according to the synchronization link topology information. The present document further discloses a controller, a synchronous node, a synchronous network, and a storage medium.
Abstract:
A time synchronization apparatus and method for automatically detecting the asymmetry of an optical fiber. The apparatus comprises an OTDR asymmetry detecting module (12), a time delay compensating module (14) and a time synchronization correcting module (16), the OTDR asymmetry detecting module (12) comprises an emitting unit (122) used for emitting a detection signal to the optical fiber, a receiving unit (124) used for receiving the detection signal returned by the optical fiber, a transmission time delay determining unit (126) used for determining the transmission time delay of the detection signal in the optical fiber according to the time difference between the emitting detection signal and the returned detection signal, and the determining transmission time delay of a service signal in the optical fiber according to the transmission time delay of the detection signal; The time delay compensating module (14) is used for calculating asymmetric time delay value between the first optical fiber and the second optical fiber according to the transmission time delay of the first optical fiber and the transmission time delay of the second optical fiber; The time synchronization correcting module (16) is used for synchronization correcting time according to the asymmetry time delay. The apparatus and method can improve the time synchronism precision.
Abstract:
A method and a device for detecting a 1588 time error between network elements are disclosed. The method includes: a 1588 time network is established for an entire network; when it is required to detect a 1588 time error between a network element and its opposite network element, the network elements transmit, probe packets, each including a local timestamp to each other; and the network element receiving a probe packet calculates, according to a preset time difference algorithm, a time difference between the local timestamp and the timestamp in the probe packet, determines, according to the time difference, whether there is a failure in a detection path, and reports an alarm when there is a failure in the detection path. The disclosure prevents erroneous time transmission due to the time error, thus ensuring the network stability.