OPTICAL DISTANCE SENSING USING A TARGET SURFACE HAVING A NON-UNIFORM DESIGN OF REGIONS OF DIFFERENT REFLECTIVITY

    公开(公告)号:US20220035478A1

    公开(公告)日:2022-02-03

    申请号:US17311511

    申请日:2019-12-09

    Abstract: An apparatus, e.g. a proximity sensor module (10), for optical distance sensing includes a target surface (25) having a non-uniform design including a high-reflectivity region and a low-reflectivity region for light of a particular wavelength. The position of the target surface (25) is displaceable within the apparatus. The apparatus includes a light source (12) operable to emit light at the particular wavelength toward the target surface (25), and a photodetector (14) operable to sense at least some of the light emitted by the light source and subsequently reflected by the target surface (25). A processor is operable to correlate an output from the photodetector (14) with a distance to the target surface (25). A wall (22) may separate the light source (12) and photodetector (14) from one another, which can help reduce internal optical crosstalk. The light source (12) and photodetector (14) are mounted and electrically coupled to a substrate (16) that, in turn, can be mounted and electrically coupled to a printed circuit board (PCB) (18) of a host device. The light source (12) and photodetector (14) are surrounded laterally by a spacer or housing wall (20). The target surface (25) may be the backside of a touch interactive display screen (24) in the host device, e.g., a portable computing device such as a smartphone, tablet, wearable device, personal digital assistant (PDA), or personal computer. Circuitry (28) can be implemented, for example, as an integrated circuit chip or other processor and may include software and/or a look-up table stored in memory that allows the circuitry (28) to correlate the measured photodetector signal to a distance. When pressure is provided on the display screen (24) (e.g., by a person pressing her finger on the screen), the display screen is displaced slightly in the direction of the substrate (16) on which the light source (12) and photodetector (14) are mounted. As a result of the displacement, the intensity of light detected by the photodetector (24) changes. The signal measured by the photodetector (24) can be correlated to a distance value. If the distance value is within a specified range (or changes by at least a specified amount), for example, it can trigger some further action in the host device.

    PROXIMITY SENSORS AND METHODS FOR OPERATING THE SAME

    公开(公告)号:US20200149884A1

    公开(公告)日:2020-05-14

    申请号:US16622792

    申请日:2018-06-14

    Abstract: An optoelectronic device has an asymmetric field overlap and is operable to measure proximity independently of object surface reflectivity. In some instances, the optoelectronic device includes a plurality of light-emitting assemblies and a light-sensitive assembly. In some instances, the optoelectronic devices include a plurality of light-sensitive assemblies and a light-emitting assembly. An asymmetric field overlap is attained in various implementations via various field-of-view axis, field-of-view angle, field-of-illumination axis, field-of-illumination angle, optical element and/or pitch configurations.

    Optical distance sensing using a target surface having a non-uniform design of regions of different reflectivity

    公开(公告)号:US11921956B2

    公开(公告)日:2024-03-05

    申请号:US17311511

    申请日:2019-12-09

    Abstract: An apparatus, e.g. a proximity sensor module (10), for optical distance sensing includes a target surface (25) having a non-uniform design including a high-reflectivity region and a low-reflectivity region for light of a particular wavelength. The position of the target surface (25) is displaceable within the apparatus. The apparatus includes a light source (12) operable to emit light at the particular wavelength toward the target surface (25), and a photodetector (14) operable to sense at least some of the light emitted by the light source and subsequently reflected by the target surface (25). A processor is operable to correlate an output from the photodetector (14) with a distance to the target surface (25). A wall (22) may separate the light source (12) and photodetector (14) from one another, which can help reduce internal optical crosstalk. The light source (12) and photodetector (14) are mounted and electrically coupled to a substrate (16) that, in turn, can be mounted and electrically coupled to a printed circuit board (PCB) (18) of a host device. The light source (12) and photodetector (14) are surrounded laterally by a spacer or housing wall (20). The target surface (25) may be the backside of a touch interactive display screen (24) in the host device, e.g., a portable computing device such as a smartphone, tablet, wearable device, personal digital assistant (PDA), or personal computer. Circuitry (28) can be implemented, for example, as an integrated circuit chip or other processor and may include software and/or a look-up table stored in memory that allows the circuitry (28) to correlate the measured photodetector signal to a distance. When pressure is provided on the display screen (24) (e.g., by a person pressing her finger on the screen), the display screen is displaced slightly in the direction of the substrate (16) on which the light source (12) and photodetector (14) are mounted. As a result of the displacement, the intensity of light detected by the photodetector (24) changes. The signal measured by the photodetector (24) can be correlated to a distance value. If the distance value is within a specified range (or changes by at least a specified amount), for example, it can trigger some further action in the host device.

Patent Agency Ranking