Abstract:
A strengthened glass sheet product along with a process and an apparatus for strengthening a glass sheet are provided. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
A strengthened glass sheet product along with a process and an apparatus for strengthening a glass sheet are provided. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
A laminated glass article comprises a core layer comprising a core glass composition having an average core coefficient of thermal expansion (CTEcore) and a clad layer directly adjacent to the core layer and comprising a clad glass composition having an average clad coefficient of thermal expansion (CTEclad) that is less than the CTEcore such that the clad layer is in compression and the core layer is in tension. A compressive stress of the clad layer increases with increasing distance from the outer surface of the clad layer, transitions to a minimum tensile stress as a step-change at an interface region between the core layer and the clad layer, and a magnitude of the tensile stress increases continuously to a maximum tensile stress in the core layer. Other stress profiles, and methods of preparing laminated glass articles are also disclosed.
Abstract:
A strengthened cover glass or glass-ceramic sheet or article as well as processes and systems for making the strengthened glass or glass-ceramic sheet or article is provided for use in consumer electronic devices. The process comprises cooling the cover glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened cover glass sheets for use in or on consumer electronic products.
Abstract:
To provide a tempered glass sheet having a thickness of from 1.8 to less than 2.5 mm, which is capable of satisfying the fragmentation quality and impact strength quality required for windowpanes for automobiles. A tempered glass sheet having a first surface, a second surface opposed to the first surface and a side surface connecting the first and second surfaces, and having a thickness of from 1.8 to less than 2.5 mm, wherein at the first surface, the average value of the surface compressive stress is within a range of from 100 to 160 MPa, and the average value of the surface strength is within a range of from 220 to 400 MPa.
Abstract:
A strengthened glass sheet product as well as process and an apparatus for making the product. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
There is provided a tempered glass plate, wherein a thickness of the tempered glass plate is less than or equal to 2.7 mm, wherein on a surface of the tempered glass plate, a plurality of stress marks are formed, wherein a distance between closest stress marks of the plurality of stress marks is less than or equal to 20 mm, wherein the surface of the tempered glass plate includes a first virtual circle that is formed by connecting points that are separated from a center of one of the plurality of stress marks by 2.5 mm, wherein the tempered glass plate includes a non elastic-wave region that is not affected by an elastic-wave generated during fracturing, and wherein, in the non elastic-wave region, an average number of cracks that exist in the first virtual circle is greater than or equal to 3.4.
Abstract:
A strengthened glass sheet product as well as process and an apparatus for making the product. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
A strengthened glass sheet product along with a process and an apparatus for strengthening a glass sheet are provided. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
Equipment and manufacturing processes allow for strengthened glass or glass ceramic articles having unique stress profiles, such as high negative tensile stresses and steep tensile stress curves with respect to depth, in strengthened glass or glass ceramic articles that are thin and/or have large-area structures for a given degree of thermal temping.