摘要:
A process for manufacturing an MCF preform having a center longitudinal axis, a plurality of core rods each positioned in a respective core hole and extending along the axis, and a common cladding covering each of the plurality of core rods. The process includes the following steps. A cylinder is provided which will form the cladding of the preform and may have a center core hole. Peripheral core holes are created in the cylinder extending along the longitudinal axis. Each of a plurality of core rods is inserted into a respective peripheral core hole. The cylinder with the core rods inserted in the respective core holes is heated by exposing the cylinder and core rods to a heating element, thereby integrating the core rods and the cylinder and forming the preform, wherein the position error of the core holes with respect to the diameter of the preform is ≤0.6%.
摘要:
A system and methods are described herein for preheating a preform in a preheater furnace and then transferring the preheated preform to a consolidation furnace for chemical treatment and sintering the preform into a clear glass which can be drawn into optical fiber. In addition, the preheater furnace is described herein which is configured to heat the preform per a predetermined heat-profile until the preform is uniformly heated to a temperature above 1000° C.
摘要:
The application provides a method for automatically processing a conical tip of an optical fiber preform, including: step 10: suspending an optical fiber preform requiring conical tip processing on a suspension component, where the optical fiber preform moves downward vertically along with the suspension component; step 20: arranging a furnace body below the suspension component, where a preset depth is set inside the furnace body, and after the optical fiber preform moves to the preset depth inside the furnace body, the furnace body is heated; step 30: arranging an automatic cutting component below the furnace body, where a preset temperature is set inside the furnace body, after a temperature inside the furnace body reaches the preset temperature, a bottom of the furnace body is opened to make the optical fiber preform melt to form a conical tip, and the automatic cutting component cuts the molten conical tip.
摘要:
The present invention relates to a method of forming an optical fiber precursor including: forming an alkali metal doped tube; inserting an optical fiber core rod within the alkali metal doped tube; forming a cladding jacket around the alkali metal doped tube; and diffusing an alkali metal from the alkali metal doped tube through a surface of the optical fiber core rod. The present invention further relates to an optical fiber preform having: an optical fiber core rod; an alkali metal doped tube surrounding the optical fiber core rod; and a cladding jacket surrounding the alkali metal doped tube.
摘要:
An automated large outside diameter preform tipping process. A zone of the preform is heated inside a furnace and softened. The preform tip is shaped and the process is controlled by the movement of the glass above and below the heating zone and by sensing the weight of the lower part of the preform, which in effect is a measure of the viscosity of the softened material. Once the correct viscosity is reached, the bottom holder is moved away from the top holder with a non-linear, accelerated velocity profile (derived from the FEM simulation of glass flow) which is precisely programmed and controlled so that the preform tip is optimally shaped (usually short and sharp tipped) with minimum waste and waveguide distortion when drawn into a fiber. The same concept of the non-linear, accelerated velocity profile can also be applied to other tipping processes such as horizontal preform tipping processes.
摘要:
Provided is a glass base material elongation method for elongating a glass base material with a large diameter to manufacture a glass rod with a smaller diameter, the method comprising, when elongating a glass base material that has a transparent glass tapered portion at one end of a trunk portion and a glass tapered portion including a non-transparent glass portion at the other end of the trunk portion, prior to the elongation, fusing a hanging dummy to an end of the transparent glass tapered portion, setting the hanging dummy in communication with a feeding mechanism, inserting the glass base material into a heating furnace beginning with the other end, and performing elongation.
摘要:
In order to provide a glass base material elongating apparatus that can safely elongate a glass base material in an extendable top chamber without damaging a flange, provided is a glass base material elongating apparatus comprising a heating furnace; an extendable top chamber formed of a multilayer cylinder disposed above the heating furnace; a glass base material hanging mechanism that hangs a glass base material into the heating furnace and the extendable top chamber; and a top chamber lifting mechanism. A flange is formed on a top portion of an outermost tube of the multilayer cylinder, and the top chamber lifting mechanism includes a cylinder support member that supports the flange from below and a cylinder lifting member that lifts up the cylinder support member.
摘要:
In a conventional method for the production of an optical component made from quartz glass, a coaxial arrangement with a core rod, surrounded by a quartz glass envelope tube comprising an evacuable inner drilling, is introduced in the vertical direction into a heating zone, softened therein by sections and, with formation of a drawing bulb, elongated to give the quartz glass component. According to the invention, a simple and cheap method based on the above, permitting the production of high-grade optical components by elongation of a coaxial arrangement of core rod and an enveloping tube with great economy, may be achieved, whereby a core rod is used, comprising at least two separate core rods arranged one above the other in the inner drilling and the weight of an upper core rod section is taken by a mounting or support region of the enveloping tube, provided above the drawing bulb.
摘要:
The production of an optical component from quartz glass by elongation of a coaxial arrangement of a core rod and a hollow cylinder is known. The arrangement is thus introduced into a heating zone, such that the lower end begins to partly soften and the component drawn from the softened part. According to the invention, a pseudo-continuous method for the formation of the restriction in the inner passage of the hollow cylinder on which the core rod is supported, is disclosed, whereby an upper hollow cylinder is fused end on with a lower hollow cylinder to form an axial composite cylinder, a core rod is introduced into the lower hollow cylinder and the axial cylinder composite partly softened and elongated to form the optical component. A drawing bulb extending to the upper hollow cylinder forms, within which the inner passage at least partly collapses with formation of the restriction and the upper cylinder is then separated off from the drawn optical component at a separating plane and then elongated together with a core rod to form an optical component.
摘要:
The production of an optical component from quartz glass, by elongation of a coaxial arrangement of a core rod and a hollow cylinder of a given length, is known. The arrangement is thus introduced into a heating zone with a vertical orientation, such that the lower end begins to partly soften and the component is drawn downwards from the softened part. The hollow cylinder has an inner passage, provided with a restriction in the region of the lower end thereof, on which the core rod is supported. Several methods are disclosed for formation of the restriction in which the inner passage (55) is mechanically machined to a final dimension and, in one version of the method, the restriction in the inner passage (55) is generated by means of softening the lower end face of the hollow cylinder, swaged against a tool and thus folded inwards with formation of a peripheral bead ring.