Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.
Abstract:
A method and a device for monitoring the combustion of fuel in a power station are provided. An actual concentration distribution of a material in a combustion chamber is measured, the actual concentration distribution is evaluated, taking into consideration a combustion stochiometry, and conclusions are drawn regarding a composition of the fuel on the basis of the evaluation that has been carried out.
Abstract:
A combustion apparatus capable of firing biomass fuel including a burner assembly which includes a biomass nozzle concentrically surrounded by a core air zone and extending axially along the length of the core air zone, the burner assembly residing within a windbox, the windbox being attached to a furnace of a boiler, and the burner assembly being connected to the furnace by a burner throat, through which air and fuel supplied to the burner assembly are emitted into the furnace.
Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.
Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a fuel supply tube arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes through oxygen-injection holes formed in the fuel supply tube and then mixes with fluidized, pulverized, solid fuel passing through the fuel supply tube to create an oxygen-fuel mixture in a downstream portion of the fuel supply tube. This mixture is discharged into the flame chamber and ignited in a flame chamber to produce a flame.
Abstract:
A control system for a power plant having a mill for pulverizing material for input into a combustion system of the power plant includes first and second sensors for recording first and second parameter of first and second outputs from the combustion system, respectively, an adjuster system for adjusting and recording at least one variable parameter of the combustion system, and a state estimator component configured to receive a first signal relating to the first parameter, a second signal relating to the second parameter and a third signal relating to the at least one variable system parameter. The state estimator component uses the first to third signals to produce a material parameter indicator signal and a system state indicator signal. The control system includes an output component configured to receive the material parameter indicator system state indicator signals and to combine these signals to produce an output control signal.
Abstract:
The present invention relates to a gasification burner comprising a main burner, N-stage sub-burners arranged on the inner side of the main burner, where N is an integer greater than or equal to 1, the main burner and each stage of the sub-burners have independent fuel channels and oxidant channels respectively, the main burner and each stage of the sub-burners are arranged in a coaxial sleeves from outside to inside; the inner diameter of the main burner is larger than the outer diameter of the first stage of the sub-burners, and the inner diameter of each stage of the sub-burners is larger than the outer diameter of its next stage of the sub-burners; the gasification burner can ensure fuels and oxidants to be mixed fully and evenly in limited reaction space and residence time, accelerate combustion reaction rate, thereby improving fuel conversion rate and gasification performance; meanwhile, it can flexibly adjust flame shape without reducing the load of gasifier furnace by adjusting the load of the main burner and each stage of the sub-burners, thereby effectively avoiding overheating of the gasifier furnace to meet different production load requirements of project sites.
Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a solid fuel conduit arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes generally tangentially through a first set of oxygen-injection holes formed in the solid fuel conduit and off-tangentially from a second set of oxygen-injection holes formed in the solid fuel conduit and then mixes with fluidized, pulverized, solid fuel passing through the solid fuel conduit to create an oxygen-fuel mixture in a downstream portion of the solid fuel conduit. This mixture is discharged into a flame chamber and ignited in the flame chamber to produce a flame.
Abstract:
A burner assembly combines oxygen and fuel to produce a flame. The burner assembly includes an oxygen supply tube adapted to receive a stream of oxygen and a fuel supply tube arranged to extend through the oxygen tube to convey a stream of fluidized, pulverized, solid fuel into a flame chamber. Oxygen flowing through the oxygen supply tube passes through oxygen-injection holes formed in the fuel supply tube and then mixes with fluidized, pulverized, solid fuel passing through the fuel supply tube to create an oxygen-fuel mixture in a downstream portion of the fuel supply tube. This mixture is discharged into the flame chamber and ignited in a flame chamber to produce a flame.
Abstract:
A device for determining a composition of fuel in a combustion chamber of a power station is provided. The device includes a measuring device for measuring an actual concentration distribution of a substance in a combustion chamber' an analysis device for analyzing the actual concentration distribution, taking into account a combustion stochiometry; and an evaluation device for determining a composition of fuel based upon the analyzing.