Abstract:
A digital analog converter which is especially suitable for use in converting a digital audio signal into an analog audio signal includes a unit pulse response signal generator for successively generating unit pulse response signals at a predetermined time interval, a digital data generator for generating digital data at the predetermined time interval, a multiplier for multiplying a unit pulse response signal generated at a certain time by a predetermined item of the digital data, and a mixer for producing an analog signal output by combining the unit pulse response signals that have been multiplied by the digital data.
Abstract:
Successive two-trip traversals of charges between gates G.sub.0 and G.sub.2 make it possible to obtain beneath gates G.sub.1 and G.sub.2 quantities of charges equal to Q.sub.R, Q.sub.R /2, Q.sub.R /2.sup.2 . . . Q.sub.R /2.sup.i. A readout device for reading charges and connected to gates G.sub.2 and G.sub.4 generates voltages V.sub.R and V.sub.Ri =a.sub.0 .multidot.V.sub.R +a.sub.1 .multidot.V.sub.R /2+ . . . +a.sub.i-1 .multidot.V.sub.R /2.sup.i-1 +V.sub.R /2.sup.i which are compared with a voltage sample V.sub.x to be coded in order to determine by successive approximations the coefficients a.sub.0 . . . a.sub.n which are equal to 0 or to 1 such that V.sub.x =a.sub.0 .multidot.V.sub.R +a.sub.1 .multidot.V.sub.R /2+ . . . +a.sub.n .multidot.V.sub.R /2.sup.n. Depending on the value of a.sub.i, each quantity of charges Q.sub.R /2.sup.i stored beneath gate G.sub.1 is removed beneath diode D.sub.e or stored beneath gate G.sub.3 and then transferred beneath gate G.sub.4.
Abstract:
An electronic device for amplifying, with automatic gain control by discr values, analogue signal samples and thereafter preferably effecting analogue-to-digital conversion of the samples, consists of an amplifier circuit, a comparator circuit, and a delay store circuit. The amplifier has a basic gain during a gain control or gain ranging operation, and supplies an output sample amplified with sufficient gain to bring it into the region of a predetermined voltage. The comparator circuit compares the output of the amplifier circuit with a reference and supplies an output in accordance with the result of the comparison. For analogue-to-digital conversion the amplifier circuit supplies for an input signal U an output signal 2U - VQ, where VQ is the quantification voltage, or, in other embodiments a signal 2U.
Abstract:
Degradation of a reception performance by an image signal is reduced. A semiconductor device includes: an oscillation circuit configured to generate a local signal; a mixer configured to multiply a reception signal by the local signal; an analog filter configured to filter a signal output from the mixer; an AD converter configured to digitalize a signal that has passed through the analog filter to generate a first signal; a digital filter configured to filter a signal that has passed through the AD converter to generate a second signal; a power comparator configured to detect the power difference between the first signal and the second signal; a register configured to store a theoretical power difference; and a determination unit configured to determine a frequency of the local signal based on the power difference from the theoretical power difference.
Abstract:
A non-linear pulse code modulator wherein input signals are coded into digital representations of amplitude range segments and amplitude in excess of the minimum amplitude within the respective range segment uses a first analog-to-digital converter having a sawtooth-shaped control characteristic to determine the amplitude range segment from an input signal sample. The output of the first analog-to-digital converter is used to effectively divide the signal sample by a factor 2.sup.n, where n corresponds to the determined range. The result of the division is then converted in a second analog-to-digital conversion to a digital signal that is combined with the digital range segment signal for transmission thereof.