Abstract:
Multistage Wiener filters (MWF) represent a component of the MWF as an un-normalized vector of filter coefficients within a finite impulse response (FIR) filter in a manner that avoids reliance on the 2-norm operation of the un-normalized vector of coefficients. The 2-norm operation can be replaced by less expensive operations performed elsewhere in the MWF. Preferably the filter adds only a few additional addition, subtraction and multiplication operations to compensate for the elimination of the square root and the division operations used for the 2-norm operation. As a result, it is possible to eliminate all or nearly all of the square rod and arithmetic division operations of at least some implementations of the MWF.
Abstract:
Technology to generation of linear feedback shift register based PRN spreading code sequence using a processor device in a computing system is disclosed. A system is provided for generating a GNSS code sequence in a computer system, the system comprising one or more logic circuits configured to at least: receive a plurality of waveform generation parameters; select between a short pseudo-random noise (PRN) cycle and a long PRN cycle according to at least one of the plurality of waveform generation parameters; and emulate a plurality of linear feedback shift registers (LFSR) for generating a block of PRN code chips.
Abstract:
Technology to generation of linear feedback shift register based PRN spreading code sequence using a processor device in a computing system is disclosed. A system is provided for generating a GNSS code sequence in a computer system, the system comprising one or more logic circuits configured to at least: receive a plurality of waveform generation parameters; select between a short pseudo-random noise (PRN) cycle and a long PRN cycle according to at least one of the plurality of waveform generation parameters; and emulate a plurality of linear feedback shift registers (LFSR) for generating a block of PRN code chips.
Abstract:
A method for performing joint detection includes adjusting a ranking order of codes in a matched filtering result, and a ranking order of column vectors in a system submatrix according to the power. The joint detection is performed using an adjusted matched filtering result and an adjusted system submatrix, and acquires demodulated signals corresponding to the codes. The codes that have high power will be demodulated first. This ensures accuracy of demodulation, inhibits erroneous propagation effect, and improves accuracy of the joint detection.
Abstract:
A method for performing joint detection includes adjusting a ranking order of codes in a matched filtering result, and a ranking order of column vectors in a system submatrix according to the power. The joint detection is performed using an adjusted matched filtering result and an adjusted system submatrix, and acquires demodulated signals corresponding to the codes. The codes that have high power will be demodulated first. This ensures accuracy of demodulation, inhibits erroneous propagation effect, and improves accuracy of the joint detection.