Abstract:
Heating or maintaining the temperature of a cathode ray tube that is waiting to undergo frit knocking has been discovered to substantially reduce the dangerous and harmful tendency of electrical arcing between the high-voltage probe and grounded band used in the frit knocking process. Any means or method of heating such a cathode ray tube including, but not limited to, placing the cathode ray tube in an oven or heating unit, or in a heated room or chamber produces beneficial results. Placing the cathode ray tube in an insulated envelope or blanket can also help. In particular, one or more heat packs that are heated in an oven and then brought into thermal contact with the cathode ray tube can be used to heat or maintain the temperature of the cathode ray tube.
Abstract:
Disclosed is a method of manufacturing plasma display panels for carrying out aging with high productivity. In an aging process for applying a predetermined voltage and driving plasma display panels 21 for display operation, each plasma display panel is set into an aging unit provided with cooling means, and the aging is carried out on the plasma display panel while cooling the plasma display panel by the cooling means provided in the aging unit. This method can thus reduce temperature rise of the panel and prevent the panel from being cracked during the aging process.
Abstract:
An alignment tool (300) designed to replace a high-powered lamp with a low-powered lamp to facilitate safe alignment of a projector lamp console. The alignment tool (300) comprised of a cathode portion (302) and an anode portion (304) connected by one or more rods (306). The alignment tool holds a light source such as a flashlight (324) having an exposed bulb (320) in the approximate location of the arc of the high-powered lamp. The cathode and anode sockets and the reflector of the projector lamp console are adjusted until the exposed bulb (320) is at the F1 focal point of the reflector and the optical axis of the alignment tool is the optical axis of the reflector.
Abstract:
Disclosed is an electron gun assembling method used for assembling a first electrode having a plurality of beam apertures as opposed to one cathode used as an electron beam emitting source with a cathode structure having the cathode. The method includes: a first step of rotating the cathode structure on its axis in a state in which the cathode structure is opposed to the first electrode, and measuring, during rotation of the cathode structure, a distance between each of the beam apertures of the first electrode and a beam emission plane of the cathode; and a second step of setting a rotational position of the cathode structure on the basis of the result measured in the first step. In the second step, particularly, the rotational position of the cathode structure may be set under a condition that the maximum one of differences between the distances from the beam apertures of the first electrode to the beam emission plane of the cathode is minimized. With this assembling method, it is possible to reduce a variation in operational characteristics, such as a cutoff characteristic, of the electron gun.
Abstract:
A method of fabricating an electron source includes the steps of fixing a first sealing member to a substrate disposed with an electroconductive member, the first sealing member surrounding the electroconductive member excepting a portion of the electroconductive member, abutting a chamber on the first sealing member to cover the electroconductive member excepting the portion of the electroconductive member and form a hermetically sealed atmosphere between the substrate and the chamber, supplying power to the portion of the electroconductive member to give part of the electroconductive member covered with the chamber an electron-emitting function, and removing the chamber from the substrate.
Abstract:
The object of this invention is to provide a plasma display panel in which an aging process essential to the manufacturing process generates minimal phosphor deterioration, enabling a relatively high luminous efficiency and high quality color production to be produced. To achieve this object, the aging process takes place while gas generated inside the panel is evacuated. Alternatively, after completion of the aging process, the phosphor of the whole panel is heated to restore heat deterioration.
Abstract:
A high pressure discharge lamp having a pair of electrodes with a space of 0.5 mm to 2.0 mm inclusive between them and disposed in an arc tube. An electrical discharge takes place between the electrodes. Each of the electrodes has an electrode rod and a head that is provided at the discharge side end of the electrode rod and having a larger diameter than the electrode rod. A surface of the head being opposite to the other electrode is convexly curved and a protruding part is formed in the vicinity of the center portion of the end of the head.