Abstract:
A method for injecting a liquid directly into a fluidised bed and a configuration of at least one twin nozzle in which a gas is used to atomise the liquid and each nozzle permits a dispersion of liquid into a vessel containing the fluidised bed.
Abstract:
The invention relates to continuous gas fluidised bed polymerisation of olefins, especially ethylene, propylene, or mixtures of these with other alpha olefins, wherein the monomer-containing recycle gas employed to fluidise the bed is cooled to condense out at least some liquid hydrocarbon. The condensed liquid, which can be a monomer or an inert liquid, is separated from the recycle gas and is fed directly to the bed to produce cooling by latent heat of evaporation. The liquid feeding to the bed can be through gas-induced atomiser nozzles (FIG. 2), or through liquid-only nozzles. The process provides substantially improved productivity of gas fluidised bed polymerisation of olefins.
Abstract:
An electrosurgical system is provided for the treatment of tissue, the system comprising an electrosurgical generator (1) and an instrument (3) comprising an instrument shaft (10) having a longitudinal axis, and an electrode assembly (12) at one end of the shaft. The electrode assembly (12) comprises a first tissue treatment electrode (11), a second tissue treatment electrode (14), and first and second return electrodes (24, 25) electrically insulated from the first and second tissue treatment electrodes by means of insulation members (12, 15). The first and second tissue treatment electrodes (11, 14) each have an exposed surface for treating tissue, the exposed surface of the first tissue treatment electrode (11) being such as to treat tissue disposed on the longitudinal axis, and the exposed surface of the second tissue treatment electrode (14) being such as to treat tissue disposed laterally of the longitudinal axis. The instrument has a first set of connections (62A, 62C) by which the first tissue treatment electrode (11) can be placed in circuit with the first return electrode (24) such that, in use, a current path is established between the first tissue treatment electrode (11) and the first return electrode (24). The instrument has a second set of connections (62B, 62D) by which the second tissue treatment electrode (14) can be placed in circuit with the second return electrode (25) such that, in use, a current path is established between the second tissue treatment electrode (14) and the second return electrode (25).
Abstract:
A composite wood product adapted for burning includes a compacted mixture of lignosulfonate, wood particles, and ground corn. A method of manufacturing the composite wood product includes: (i) providing and mixing the lignosulfonate, the wood particles, and the ground corn to form a mixture having a moisture content from about 6 wt. % to about 18 wt. %; compacting the mixture at high pressure; and drying the mixture to obtain an optimum moisture level for burning. The composite wood product may be provided in a kit that includes log-shaped pieces and starter pieces.
Abstract:
A surgical instrument and actuation mechanism comprises an end effector, the end effector including opposing faces, and a positioning slot. The positioning slot includes a linear portion and a radial portion. In accordance with one aspect, the surgical instrument further comprises an actuation mechanism engaged with the positioning slot, wherein the opposing faces of the end effector move in a parallel manner when the actuation mechanism moves within the linear portion of the positioning slot, and wherein the opposing faces of the end effector move in an angular manner when the actuation mechanism moves within the radial portion of the positioning slot.
Abstract:
A coordinate detection system can comprise a display screen, a touch surface corresponding the top of the display screen or a material positioned above the screen and defining a touch area, at least one camera outside the touch area and configured to capture an image of space above the touch surface, an illumination system comprising a light source, the illumination system configured to project light from the light source through the touch surface, and a processor executing program code to identify whether an object interferes with the light from the light source projected through the touch surface based on the image captured by the at least one camera. Light can be directed upward by sources positioned behind the screen, by sources positioned behind the screen that direct light into a backlight assembly that directs the light upward, and/or by a forward optical assembly in front of the screen that directs the light upward.
Abstract:
An optical imaging secondary input means for a computing system. The computing system includes a display screen having a viewing area and a computing device interfaced therewith. At least one primary input means, such as a coordinate input system, keyboard, mouse, etc., is interfaced with the computing device. The optical imaging secondary input means includes a reflective surface external to the viewing area of the display screen, at least one energy emitter for emitting energy toward the reflective surface, and at least one optical sensor for detecting the energy reflected from the reflective surface and outputting signals representing the same to the computing device. The computing device also executes one or more program modules for determining whether an object interacts with the secondary input means based on changes in the energy reflected from the reflective surface, as represented by the signals from the at least one optical sensor.
Abstract:
A computing device, such as a desktop, laptop, tablet computer, a mobile device, or a computing device integrated into another device (e.g., an entertainment device for gaming, a television, an appliance, kiosk, vehicle, tool, etc.) is configured to determine user input commands from the location and/or movement of one or more objects in a space. The object(s) can be imaged using one or more optical sensors and the resulting position data can be interpreted in any number of ways to determine a command. An interactive volume can be defined and adjusted so that the same movement at different locations within the volume may result in different corresponding movement of a cursor or other interpretations of input.
Abstract:
A computing device, such as a desktop, laptop, tablet computer, a mobile device, or a computing device integrated into another device (e.g., an entertainment device for gaming, a television, an appliance, kiosk, vehicle, tool, etc.) is configured to determine user input commands from the location and/or movement of one or more objects in a space. The object(s) can be imaged using one or more optical sensors and the resulting position data can be interpreted in any number of ways to determine a command, including 2-dimensional and 3-dimensional movements with or without touch.