Abstract:
Systems and methodologies are described that facilitate monitoring RF channels in a wireless communication environment to determine whether one or more channels comprise a forward-link-only (FLO) signal. A receiver can receive a first RF channel with a FLO signal and can monitor other RF channels for FLO signals. Upon a determination that a monitored RF channel comprises a FLO signal, the receiver can switch between the first RF channel and the monitored RF channel to facilitate providing seamless reception of the FLO signal, which can be superframe synchronized between RF channels. FLO signal detection can be performed using one or more of a wide-area identification channel energy detection protocol and a wide-area overhead information symbol decoding error detection protocol.
Abstract:
Methods and circuits for positioning a signal sampling window within a wireless receiver device for use in a multi-transmitter wireless broadcast network include generating a long channel model based upon a signal identifying transmitters that can be processed without aliases, and positioning the signal sampling window based upon the long channel model. For example, in a MediaFLO® broadcast, the long channel model may be generated by receiving positioning pilot channel (PPC) signals. Positions for the signal sampling window may be determined by identifying hypothetical signal sampling window positions, calculating signal to interference and noise ratio (SINR) values for each identified hypothetical, and selecting the hypothetical with the best SINR. Using a long channel model to position the signal sampling window may provide improved window placement, reduce destructive aliasing, and reduce a time guard in the window placement. The long channel model may be used in conjunction with terrain databases.
Abstract:
Certain embodiments provide methods that may allow for improvements in performance and power consumption by terminating the turbo decoding process early when one of at least two test criterion is satisfied in communications systems, including UMTS, WCDMA, and TD-DCMA.
Abstract:
Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the NS best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
Abstract:
A frequency tracking method and apparatus is provided. A receiver receives OFDM symbols and determines associated frequency offset. A frequency error estimator selects a cross correlation window for determining frequency offset based on timing offset. A symbol timing estimator is used to determine the timing offset.
Abstract:
An improved receiver apparatus and algorithm for equalizing signals in a receiver device may equalize a block of data generated from N data symbols in a single carrier communication system. A first algorithm may be applied to a plurality of signal samples to generate a frequency domain representation of the samples. A channel estimate may be generated and a frequency response of a zero-forcing or a minimum-mean-square equalizer is applied. A conjugate of the computed frequency response is multiplied with a frequency domain representation for each sample to generate a product value. N-aliased frequency domain values from the generated product value may be determined for each of the samples. A second algorithm is applied to the generated N-aliased frequency domain values to generate estimates of the transmitted time domain data symbols.
Abstract:
Methods and systems are described for processing a signal in wireless communications. The signal may have synchronization information. A method of processing a signal having synchronization information may include receiving the signal, and determining a truncation region of the time domain estimated channel, the estimated channel having taps. The method further includes processing the channel taps within the truncation region.
Abstract:
Methods and apparatus for reduction of a peak to average ratio for an OFDM transmit signal. In an aspect, a method is provided for reducing a peak to average ratio of a transmit waveform. The method includes obtaining a primary scrambler sequence, generating a secondary scrambler sequence having a length characteristic based on data to be scrambled, and combining the primary and secondary scrambler sequences to produce a PAR reduction sequence. In another aspect, an apparatus is provided for reducing a peak to average ratio of a transmit waveform. The apparatus includes a secondary generator configured to generate a secondary scrambler sequence having a length characteristic based on data to be scrambled, and combining logic configured to combine a primary scrambler sequence and the secondary scrambler sequences to produce a PAR reduction sequence.
Abstract:
Techniques for performing frequency control in an OFDM system are described. In one aspect, frequency acquisition is performed based on a received pilot, and frequency tracking is performed based on received OFDM symbols. For frequency acquisition, an initial frequency error estimate may be derived based on the received pilot, and an automatic frequency control (AFC) loop may be initialized with the initial frequency error estimate. For frequency tracking, a frequency error estimate may be derived for each received OFDM symbol, and the AFC loop may be updated with the frequency error estimate. Frequency error in input samples is corrected by the AFC loop with the initial frequency error estimate as well as the frequency error estimate for each received OFDM symbol. In another aspect, a variable number of samples of a received OFDM symbol are selected, e.g., based on the received OFDM symbol timing, for use for frequency error estimation.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer readable storage media, for increasing utilization of transmission resources by mapping data from a block of layered codec data onto a plurality of logical channels for transmission of the mapped data. Resource utilization may also be improved by mapping data from at least two layers of a block of layered of codec data onto a logical channel that supports only a single data channel carried by a transmit modulation scheme.