摘要:
Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the NS best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
摘要:
Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the NS best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
摘要:
Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the NS best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
摘要:
Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the NS best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
摘要:
Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the Ns best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
摘要:
Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the NS best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
摘要:
Techniques to process data for transmission over a set of transmission channels selected from among all available transmission channels. In an aspect, the data processing includes coding data based on a common coding and modulation scheme to provide modulation symbols and pre-weighting the modulation symbols for each selected channel based on the channel's characteristics. The pre-weighting may be achieved by “inverting” the selected channels so that the received SNRs are approximately similar for all selected channels. With selective channel inversion, only channels having SNRs at or above a particular threshold are selected, “bad” channels are not used, and the total available transmit power is distributed across only “good” channels. Improved performance is achieved due to the combined benefits of using only the NS best channels and matching the received SNR of each selected channel to the SNR required by the selected coding and modulation scheme.
摘要:
Techniques to perform beam-steering and beam-forming to transmit data on a single eigenmode in a wideband multiple-input channel. In one method, a steering vector is obtained for each of a number of subbands. Depending on how the steering vectors are defined, beam-steering or beam-forming can be achieved for each subband. The total transmit power is allocated to the subbands based on a particular power allocation scheme (e.g., full channel inversion, selective channel inversion, water-filling, or uniform). A scaling value is then obtained for each subband based on its allocated transmit power. Data to be transmitted is coded and modulated to provide modulation symbols. The modulation symbols to be transmitted on each subband are scaled with the subband's scaling value and further preconditioned with the subband's steering vector. A stream of preconditioned symbols is then formed for each transmit antenna.
摘要:
Techniques for processing a data transmission at the transmitter and receiver. In an aspect, a time-domain implementation is provided which uses frequency-domain singular value decomposition and “water-pouring” results to derive time-domain pulse-shaping and beam-steering solutions at the transmitter and receiver. The singular value decomposition is performed at the transmitter to determine eigen-modes (i.e., spatial subchannels) of the MIMO channel and to derive a first set of steering vectors used to “precondition” modulation symbols. The singular value decomposition is also performed at the receiver to derive a second set of steering vectors used to precondition the received signals such that orthogonal symbol streams are recovered at the receiver, which can simplify the receiver processing. Water-pouring analysis is used to more optimally allocate the total available transmit power to the eigen-modes, which then determines the data rate and the coding and modulation scheme to be used for each eigen-mode.
摘要:
Techniques for processing a data transmission at the transmitter and receiver. In an aspect, a time-domain implementation is provided which uses frequency-domain singular value decomposition and “water-pouring” results to derive time-domain pulse-shaping and beam-steering solutions at the transmitter and receiver. The singular value decomposition is performed at the transmitter to determine eigen-modes (i.e., spatial subchannels) of the MIMO channel and to derive a first set of steering vectors used to “precondition” modulation symbols. The singular value decomposition is also performed at the receiver to derive a second set of steering vectors used to precondition the received signals such that orthogonal symbol streams are recovered at the receiver, which can simplify the receiver processing. Water-pouring analysis is used to more optimally allocate the total available transmit power to the eigen-modes, which then determines the data rate and the coding and modulation scheme to be used for each eigen-mode.