Abstract:
A capacitor discharging circuit and a power converter having the capacitor discharging circuit are disclosed. The capacitor discharging circuit comprises a conversion module connected with the two terminals of the capacitor, an AC power-off detecting unit used to detect on-off state of AC power, and a control unit. The conversion module comprises an energy consumption unit. When AC power is disconnected, the AC power-off signal generated by the AC power-off detecting unit intervenes the control unit to control the energy consumption unit to consume the energy stored in the capacitor.
Abstract:
The configurations of a resonant converter system and a controlling method thereof are provided. The proposed resonant converter system includes a resonant converter receiving an input voltage for outputting an output voltage, a rectifying device having a first rectifying switch and a synchronous rectification control circuit coupled to the resonant converter and including a signal generation apparatus generating a weighted turn-off signal to turn off the first rectifying switch at a zero crossing point of a first current flowing through the first rectifying switch.
Abstract:
An electronic ballast for driving a light-emitting device, includes a square wave generator having a plurality of switch elements for converting a DC input voltage into a square-wave AC voltage. A transformer has a driving winding and a plurality of inductive windings mutually connected with each other, in which at least a portion of the inductive windings are respectively connected to a control terminal of the switch element. A resonant circuit connects the driving winding and a light-emitting device and converts the square-wave voltage into an AC output voltage to drive the light-emitting device. An auxiliary control unit connected to the transformer regulates a voltage waveform of the driving winding or a voltage waveform of the inductive winding according to a control signal, thereby changing the voltage waveform of the inductive winding connected to the switch element to adjust the switching frequencies of the switch elements.
Abstract:
Disclosed is an end-of-life detector for gas discharge lamp and the ballast incorporating the same. The end-of-life detector includes a lamp state signal detecting circuit for detecting the lamp state signal of at least one first gas discharge lamp and generating a positive voltage signal and a negative voltage signal accordingly; a comparing circuit for comparing the positive voltage signal with a positive selecting voltage and comparing the negative voltage signal with a negative selecting voltage, and in response thereto generating a positive control signal and a negative control signal; and a positive/negative duty time interval detecting circuit for generating a lamp life state signal which is generated by a difference between a positive duty time interval and a negative duty time interval. The lamp life state signal is varied along with the difference between the positive duty time interval and the negative duty time interval.
Abstract:
The configurations of a DC/DC resonant converter and a controlling method thereof are provided. The proposed converter includes an over-current protection apparatus including a first switch element having a first and a second terminals, and a first voltage element having a negative terminal coupled to a positive terminal of a DC input voltage source and a positive terminal coupled to the second terminal of the first switch element.
Abstract:
The configurations of a parallel-connected UPS circuit are provided in the present invention. The proposed circuit includes a neutral, a battery having a positive and a negative terminals, and a plurality of PFC boost converters, each of which includes a PFC circuit including an inductor having a first terminal coupled to the positive terminal and a second terminal, a rectifying bridge coupled to the second terminal of the inductor, and having a first terminal and a second terminal coupled to the negative terminal, a switch bridge having a first terminal coupled to the first terminal of the rectifying bridge and a second terminal coupled to the second terminal of the rectifying bridge, and a control switch having a first terminal and a second terminal coupled to the neutral.
Abstract:
In one aspect of the present invention, a converter circuit with input voltage balance includes a plurality of modules having inputs electrically series-connected to each other and outputs electrically parallel-connected to each other and a plurality of switching circuits with each electrically connected to an input connection node of a corresponding module and its immediate next module, and configured such that when an input voltage of the corresponding module or its immediate next module is in a desired range from a first predetermine value to a second predetermined value greater then the first predetermined value, the switching circuit operates in an open state, while when the input voltage is out of the desired range, the switching circuit operates in a conductive state so as to regulate the input voltage of the corresponding module or its immediate next module in the desired range.
Abstract:
The invention proposes a ballast control circuit and ballast control method for gas discharge lamp. The ballast control circuit and control method of the invention is advantageous by allowing the OFF time of the main switch of the ballast circuit to be fixed in order to prevent the transformer of the ballast circuit from being saturated when the gas discharge lamp is ignited and has a very low impedance, and allowing the OFF time of the main switch to be flexibly adapted when the gas discharge lamp is warmed up and its impedance has risen up to a certain value. The inventive ballast control circuit is configured to proceed with the switching of the main switch according to a lamp status signal indicative of the status of the lamp.
Abstract:
The configurations of a resonant converter system and a controlling method thereof are provided. The proposed resonant converter system includes a resonant converter receiving an input voltage for outputting an output voltage, a rectifying device having a first rectifying switch and a synchronous rectification control circuit coupled to the resonant converter and including a signal generation apparatus generating a weighted turn-off signal to turn off the first rectifying switch at a zero crossing point of a first current flowing through the first rectifying switch.
Abstract:
Disclosed is a test apparatus for measuring the common-mode parasitic capacitance between a first element and a second element being isolated from the first element. The test apparatus includes a signal generating device connected to the first element and having an internal signal source connected in series with a first internal impedance for sending a signal to the first element, and a signal receiving device connected between the second element and the first element and having a second internal impedance for measuring a signal response between the first element and the second element, thereby calculating the common-mode capacitance between the first element and the second element based on the signal response.