Abstract:
An optical disk apparatus is capable of reproducing information from an optical disk 10. The optical disk apparatus mainly includes an illuminating unit which is formed from a semiconductor laser 14, a collimator lens 15, a polarization beam splitter (PBS) 16 and a -wavelength converter 17, as well as an objective lens 18, that focuses a light beam onto the optical disk 10; a two-segment split photo detector 21 which detects the light beam reflected by the optical disk 10; and a signal processing circuit 27 which processes a signal obtained by the two-segment split photo detector 21 to output a signal for reproduction. The two-segment split photo detector 21 has a divisional line 22 parallel to a line tangent to the track of the optical disk 10, and the line 22 is shifted away from the center line of the zero-order diffracted beam by a distance d in the direction of the disk radius, so that the light receiving surface of the photo detector 21 is divided into two areas or segments 23a and 23b by the divisional line 22. The signal processing circuit 27 is capable of processing the difference between and the sum of signal values detected in the detecting areas 22a and 22b, and it outputs the difference signal or sum signal as the playback signal of the optical desk 10.
Abstract:
According to one embodiment, a data reproducing apparatus includes a data recording medium, light source unit, light application unit, photodetector unit and control unit. An address mark string including address marks is formed on the data recording medium. The address marks are spaced from each other by a distance depending on address data. The light application unit is configured to split the light beam into a first branch light beam and a second branch light beam and apply the first and second branch light beams to the address mark string at different angles. The photodetector unit is configured to detect first reflected light beams and second reflected light beams from the address mark string to generate image data. The first and second reflected light beams result from the first and second branch light beams, respectively. The control unit is configured to reproduce address data based on the image data.
Abstract:
A focus servo control device includes a first detector, first controller, second detector, and second controller. The first detector detects a first focus error signal. The first controller controls the objective lens based on the first focus error signal, so that a focal point of the first laser agrees with the guide layer. The second detector detects a second focus error signal. The second controller changes a relative distance between the focal point of the second laser and the focal point of the first laser, so that the focal point of the second laser agrees with a target recording/reproducing layer.
Abstract:
According to one embodiment, electronic device including, turntable configured to rotate recording medium including recording layer along plane on which surface of recording layer extends, servo data providing mechanism configured to provide on surface of turntable facing recording layer of recording medium and provides servo data used for recording of data on recoding medium or reproduction of data from recording medium, and recording and reproduction module configured to irradiate recording layer of recording medium with light having first wavelength and light having second wavelength different from light having first wavelength from opposite side of recording medium with respect to turntable.
Abstract:
According to one embodiment, an information storage medium in which layer 0 and layer 1 are arranged from a read surface, a system lead-in area, data lead-in area, data area, and middle area are arranged from an inner circumference of the layer 0, and a system lead-out area, data lead-out area, data area, and middle area are arranged from an inner circumference of the layer 1. A guard track zone is arranged on a side of the data area in the data lead-out area, and a reference code zone, R physical format information zone, recording management zone, and drive test zone are arranged in the data lead-in area of the layer 0 and padding of the guard track zone of the data lead-out area is performed after padding of the drive test zone of data lead-in area and recording of the recording management zone.
Abstract:
According to one embodiment, an information storage medium in which layer 0 and layer 1 are arranged from a read surface, a system lead-in area, data lead-in area, data area, and middle area are arranged from an inner circumference of the layer 0, and a system lead-out area, data lead-out area, data area, and middle area are arranged from an inner circumference of the layer 1. A guard track zone is arranged on a side of the data area in the data lead-out area, and a reference code zone, R physical format information zone, recording management zone, and drive test zone are arranged in the data lead-in area of the layer 0 and padding of the guard track zone of the data lead-out area is performed after padding of the drive test zone of data lead-in area and recording of the recording management zone.
Abstract:
A semiconductor laser driving device includes a current supply unit supplying current to a semiconductor laser; a first control unit controlling the current supply unit to supply a first current which is half or less of a lasing threshold of the semiconductor laser; and a second control unit controlling the current supply unit to supply a second current which is larger than the lasing threshold after a first time is passed from an edge of a clock signal.
Abstract:
According to one embodiment, the invention provides a master recording apparatus and method which can form a pit having a symmetrical pit shape with excellent reproducibility. An embodiment of the invention is a master recording apparatus where a resist film on a master for an optical disk is irradiated with irradiation light from a semiconductor laser to record information on the resist film, where the resist film is formed as an inorganic resist film, and means for outputting the irradiation light from the semiconductor laser as a short pulse laser with a pulse width between 200 ps and 1 ns is provided.
Abstract:
According to one embodiment, in one embodiment of the invention, a laser drive circuit is provided with a first current source, a second drive current source, and a third current source. The control section selectively obtains a plurality of laser light use mode of controlling the from first to third current sources to use pulse laser light accompanying relaxation oscillation, and a complex laser light use mode of using laser light where laser pulses are combined, whose starting end has an abrupt impulse change portion caused by relaxation oscillation and whose intermediate section is a flat portion with a fixed intensity.
Abstract:
According to one embodiment, a drive control apparatus of a semiconductor laser includes a driving circuit which drives the semiconductor laser by applying pulses transiting from bias current to peak current to the semiconductor laser as laser driving current that causes relaxation oscillation of emission light intensity of the semiconductor laser, and a control circuit which controls the bias current such that the bias current has a predetermined ratio limiting fluctuation of a leading peak value of the relaxation oscillation occurring for each application of pulses relative to threshold current of the semiconductor laser. The control circuit changes the bias current to maintain the predetermined ratio relative to fluctuation of the threshold current.