Abstract:
A brake actuator comprising a sleeve (1), a piston (3) sealingly slidably mounted in the sleeve to apply a braking force, the piston being provided with an internal cage (21), and a wear compensating device (10) which defines a retracted position of the piston in the sleeve by means of an axially mobile stop which is able to be moved forward by the piston during the application of a braking force and/in frictional relationship with a fixed part (12) of the wear compensating device attached to the sleeve. The mobile stop comprises a radially deformable bushing (16) which cooperates with an olive (15) which is attached to a distal end of the fixed part of the wear compensating device. The bushing comprises means for guiding its proximal end (17) against an internal face of the internal cage (21).
Abstract:
A method for monitoring at least two aircraft wheel electromechanical braking actuators. For each electromechanical actuator, the method includes first determining a current value representative of the power supply current of the electromechanical actuator and determining a reference current value estimated from the power supply currents of at least one other electromechanical actuator. Then, the representative current value and the reference current value are compared. Any abnormal operation of the electromechanical actuator is detected when the difference between the representative current value and the reference current value is above a predetermined threshold.
Abstract:
A method of managing the braking of an aircraft, the aircraft having a plurality of wheels R1, . . . , R12, each fitted with a brake F1, . . . , F12 adapted to generate a braking force in response to brake pedals 5 being depressed. The management method comprising the steps of (1) distributing the wheels fitted with respective brakes in at least two distinct groups G1, G2, G3, G′1, G′2, G′3; (2) allocating respective braking relationships to each of the groups of wheels for determining how braking force varies as a function of the depression of the brake pedals; and (3) acting at predetermined intervals to permutate the allocation of the relationships to the groups in application of a predefined permutation relationship. The method also includes a step of modifying the permutation relationship in response to the occurrence of a predetermined event.
Abstract:
An aircraft wheel which is provided with rotational driving unit (110). The driving unit comprises a driving ring (111) which is associated with structure (112) for attaching the ring to a rim of the wheel. The attachment structure is fixed to treads (119) of the rim which further serve to retain removable brake blocks (121) with which the rim is provided.
Abstract:
The invention relates to a method for the reconditioning and use of brake discs of the rear stator type with studs, the method comprising the steps of using a first disc (12) during a first life, using a second disc (112) during a first life, after the first life of the first disc and the first life of the second disc, machining a friction surface on one of the discs and a rear surface on the other of the discs so that one of said surfaces comprises at least one shoulder (17) and the other of said surfaces comprises at least one notch (118), and nesting the first disc in the second disc such that the notch and the shoulder cooperate so as to centre the discs.
Abstract:
A method of managing the lifetime of a stack of disks of an aircraft brake having at least one braking actuator including a pusher adapted to press selectively against the stack of disks in order to generate a braking force for an associated wheel, the method comprising the following steps, for a given flight of the aircraft: actuating the actuator to cause the pusher to come into contact with the stack of disks; deducing therefrom a stroke of the actuator, and by taking the difference with a nominal stroke stored in memory corresponding to the stack of disks when new, deducing a current level of wear (U) for the stack of disks; from the current level of wear and from the number of flights (N) flown since the new stack of disks was mounted, using an extrapolation method to estimate a potential number of flights (ΔN) before the stack of disks reaches a maximum acceptable level of wear (Umax).
Abstract:
A method of managing the braking of an aircraft, the aircraft having a plurality of wheels R1, . . . , R12, each fitted with a brake F1, . . . , F12 adapted to generate a braking force in response to brake pedals 5 being depressed. The management method comprising the steps of (1) distributing the wheels fitted with respective brakes in at least two distinct groups G1, G2, G3, G′1, G′2, G′3; (2) allocating respective braking relationships to each of the groups of wheels for determining how braking force varies as a function of the depression of the brake pedals; and (3) acting at predetermined intervals to permutate the allocation of the relationships to the groups in application of a predefined permutation relationship. The method also includes a step of modifying the permutation relationship in response to the occurrence of a predetermined event.
Abstract:
An aircraft wheel comprising two half-wheels (1, 2) assembled together by means of bolt fasteners (10; 110) clamping together disks of the half-wheels, each bolt fastener comprising a bolt (11; 111) with an end forming a screw head (12; 112) and a threaded end (13; 113) for receiving a nut (14; 114), the wheel also being fitted with drive keys (20; 120) that are fitted to one of the half-wheels for driving brake disks in rotation, the wheel being characterized in that each drive key has a first end (23; 123) that is shaped to co-operate with the screw head of one of the bolts so that said first end is held and prevented from moving when the key is in place on the wheel.
Abstract:
The invention relates to an actuator comprising a cylinder (1) in which a rod (2) is mounted to slide, the actuator having a screw (8) extending inside the rod to co-operate with a nut (7) secured to the rod, the screw being driven in rotation by a motor (10), the actuator being characterized in that a hydraulic chamber (CH) filled with hydraulic fluid is arranged inside the actuator by means of a floating piston (20) sliding in sealed manner against the rod inside of the actuator, the hydraulic chamber being in fluid flow communication with an accumulator (21) via a solenoid valve (22) that is controllable between a closed state in which the chamber is isolated from the accumulator, and a fluid-passing state in which the hydraulic chamber and the accumulator are in communication, calibrated resistance being exerted against the passage of fluid from the chamber towards the accumulator.
Abstract:
The invention relates to a braking system architecture for an aircraft having wheels 1 braked by means of respective brakes 2, each brake having a plurality of electromechanical actuators 3a, 3b, the braking system having controllers 8a, 8b for distributing electric power Ps to the actuators 3a, 3b in response to a braking setpoint, each controller 8a, 8b being associated with some of the actuators of any given brake. According to the invention, each controller 8a, 8b has an input Ev for receiving information about the rotary speed of the wheel 1 braked by the actuators associated with said controller, the controller including processor means 13 for modulating the power transmitted to the actuators as a function of the speed of rotation of the wheel in order to provide anti-skid protection.