Abstract:
A braking system includes a brake stack; a first brake cavity operably coupled to the brake stack, the first brake cavity including a first plurality of brake actuators; a second brake cavity operably coupled to the brake stack, the second brake cavity including a second plurality of brake actuators; and a brake control module, the brake control module being configured to activate either the first plurality of brake actuators or both the first plurality of brake actuators and the second plurality of brake actuators in response to an input brake load.
Abstract:
An aircraft includes a first landing gear assembly, a second landing gear assembly, a braking circuit, a brake control circuit, and a braking capability circuit. The landing gear assemblies each include a first braking wheel and a second braking wheel. The braking circuit may apply brakes independently to each of the braking wheels. The brake control circuit actuates braking of the first braking wheels in response to initial receipt of a braking command in a first braking phase and restrict braking at the second braking wheels during the first braking phase until the first braking wheels reach an anti-skid limit at an end of the first braking phase. The braking capability circuit determines a braking capability of the aircraft based on an amount of braking applied to reach the anti-skid limit at the first braking wheels.
Abstract:
A system for multi-mode autobrake control may comprise a wheel speed sensor and a BCU electrically coupled to the wheel speed sensor. A tangible, non-transitory memory may be configured to communicate with the BCU and may have instructions stored thereon that, in response to execution by the BCU, cause the BCU to perform operations comprising receiving a wheel speed signal from the wheel speed sensor, inputting the wheel speed signal into an antiskid filter and a nominal filter, calculating an estimated aircraft deceleration rate, and determining an autobrake pressure command based on the estimated aircraft deceleration rate.
Abstract:
An electronic circuit (12) connected to a variable-excitation sensor (24) and comprising: a digital envelope detector (20) arranged to acquire signal that is produced by the sensor in response to an excitation signal, the detector comprising: an analog-to-digital converter (22) arranged to sample the measurement signal in such a manner as to produce sample points during successive observation windows of duration T that comprise a number NS of sample points, the sample points being spaced apart by a sampling period TS, the sampling period TS and the duration T being such that: TS=NP·T0+(NT/NS)·T0 and T=NS·TS, where T0 is one excitation period of the excitation signal, where NP, NT, and NS are non-zero natural integers, and where NT is not a multiple of NS.
Abstract:
Systems and methods disclosed herein may be useful for use in landing identification. In this regard, a method is provided comprising receiving pulse information over a first time period, wherein the pulse information is indicative of an angular distance traveled by a first wheel, comparing the pulse information to a threshold value, and determining a likelihood of a landing event based upon the comparison. In various embodiments, a system is provided comprising a monstable multivibrator in electrical communication with a metal-oxide-semiconductor field-effect transistor (MOSFET), a resistor-capacitor network in electrical communication with the MOSFET, and a comparator that receives a voltage from the resistor-capacitor network and a reference voltage.
Abstract:
The present disclosure relates to rate detection components, and more particularly, to a rate detection system that determines the update rate of commands. The update rate of the commands may be determined in response to the incidence of similarities and differences among samples of the commands.
Abstract:
Apparatus for controlling velocity of aircraft during landing roll-out and/or taxiing, the apparatus comprising: a generator for absorbing kinetic energy from a landing gear of the aircraft to generate electrical energy; and a component of the aircraft for receiving and consuming electrical energy from the generator, the generator and the component being electrically connected to one another without an intervening electrical energy storage device.
Abstract:
Described herein is a system and method to enable braking system operation independent of conventional aircraft signals, such as those tied to the hibernation commands. Stated another way, the present disclosure relates to the enablement of a braking system in response to an initiation signal. In this way, the crew has the ability to force the braking system out of a hibernation mode into an “emergency type” braking mode if desired. The concepts described herein may be applicable to an electric braking system and to a hydraulic braking system.
Abstract:
The method of maintaining optimal braking and skid protection for a two-wheeled vehicle wheel with a wheel speed sensor failure involves providing pulsed braking pressure to the affected wheel with the wheel speed sensor failure. If an incipient or initial skid on another wheel with a functioning wheel speed sensor has occurred, the pulsed braking pressure to the affected wheel is limited to the brake pressure command that caused the last incipient or initial skid on the other wheel, scaled by a factor for safety. Otherwise the pulsed braking pressure to the affected wheel is limited to be no greater than the greatest commanded brake pressure to the other wheel. The pulsed braking pressure is also limited to be less than the brake pressure commanded to the affected wheel.
Abstract:
The method of maintaining optimal braking and skid protection for a two-wheeled vehicle wheel with a wheel speed sensor failure involves providing pulsed braking pressure to the affected wheel with the wheel speed sensor failure. If an incipient or initial skid on another wheel with a functioning wheel speed sensor has occurred, the pulsed braking pressure to the affected wheel is limited to the brake pressure command that caused the last incipient or initial skid on the other wheel, scaled by a factor for safety. Otherwise the pulsed braking pressure to the affected wheel is limited to be no greater than the greatest commanded brake pressure to the other wheel. The pulsed braking pressure is also limited to be less than the brake pressure commanded to the affected wheel.