Abstract:
Provided are an apparatus and method for processing a light field image that is acquired and processed using a mask to spatially modulate a light field. The apparatus includes a lens, a mask to spatially modulate 4D light field data of a scene passing through the lens to include wideband information on the scene, a sensor to detect a 2D image corresponding to the spatially modulated 4D light field data, and a data processing unit to recover the 4D light field data from the 2D image to generate an all-in-focus image.
Abstract:
An optical receiver is arranged at a location in a scene. The optical receiver includes a photo sensor configured to detect spatio-temporal modulated optical signals directed at the scene from a set of spatially dispersed optical transmitters, and to convert the optical signals from each of the optical transmitters to a corresponding electronic signal. The electronic signals can be analyzed to determine geometric properties of the location in the scene.
Abstract:
A method and system determines a 3D pose of an object in a scene. Depth edges are determined from a set of images acquired of a scene including multiple objects while varying illumination in the scene. The depth edges are linked to form contours. The images are segmented into regions according to the contours. An occlusion graph is constructed using the regions. The occlusion graph includes a source node representing an unoccluded region of an unoccluded object in scene. The contour associated with the unoccluded region is compared with a set of silhouettes of the objects, in which each silhouette has a known pose. The known pose of a best matching silhouette is selected as the pose of the unoccluded object.
Abstract:
A bidirectional screen alternately switches between a display mode showing conventional graphics and a capture mode in which the LCD backlight is disabled and the LCD displays a pinhole array or a tiled-broadband code. A large-format image sensor is placed behind the liquid crystal layer. Together, the image sensor and LCD function as a mask-based light field camera, capturing an array of images equivalent to that produced by an array of cameras spanning the display surface. The recovered multi-view orthographic imagery is used to passively estimate the depth of scene points from focus.
Abstract:
A method and system marks a scene and images acquired of the scene with tags. A set of tags is projected into a scene while modulating an intensity of each tag according to a unique temporally varying code. Each tag is projected as an infrared signal at a known location in the scene. Sequences of infrared and color images are acquired of the scene while performing the projecting and the modulating. A subset of the tags is detected in the sequence of infrared images. Then, the sequence of color image is displayed while marking a location of each detected tag in the displayed sequence of color images, in which the marked location of the detected tag corresponds to the known location of the tag in the scene.
Abstract:
A method increases a resolution of a moving object in an image acquired of a scene by a camera. The image scene is temporally modulated according to a temporally encoding pattern, while integrating the image in a camera sensor to produce a blurred input image. The blurred input image is resolved according to the temporally encoding pattern to produce an enhanced and deblurred output image in which the object has an increased resolution.
Abstract:
A method and system generate an enhanced output image. A first image is acquired of a scene illuminated by a first illumination condition. A second image is acquired of the scene illuminated by a second illumination condition. First and second gradient images are determined from the first and second images. Orientations of gradients in the first and second gradient images are compared to produce a combined gradient image, and an enhanced output image is constructed from the combined gradient image.
Abstract:
The embodiments of the invention provide a method for increasing a resolution of a moving object in an image acquired of a scene by a camera. An image acquired of a scene including a moving object is temporally modulated, according to a temporally encoding pattern, while integrating the image in a camera sensor to produce a blurred input image. The blurred input image is resolved according to the temporally encoding pattern to produce an enhanced and deblurred output image in which the object has an increased resolution.
Abstract:
An optical receiver is arranged at a location in a scene. The optical receiver includes a photo sensor configured to detect spatio-temporal modulated optical signals directed at the scene from a set of spatially dispersed optical transmitters, and to convert the optical signals from each of the optical transmitters to a corresponding electronic signal. The electronic signals can be analyzed to determine geometric properties of the location in the scene.
Abstract:
In a rear projection television, cathode ray tubes are mounted inside an enclosure so that each cathode ray tube projects output images onto a rear projection screen using a corresponding electron beam. Calibration images are generated for each cathode ray tube. A camera, also mounted inside the enclosure, acquires an input image of each calibration image. A distortion in each input image is measured, and the output images of the cathode ray tubes are corrected by adjusting the signals controlling the corresponding electron beams according to the distortion.