Abstract:
In illustrative implementations of this invention, an imaging system includes multiple light sources that illuminate a scene, and also includes a lock-in time of flight camera. While the scene is illuminated by these light sources, each of the light sources is amplitude-modulated by a different modulation pattern, and a reference signal is applied to the lock-in time-of-flight camera. The modulation patterns and the reference signal are carefully chosen such that the imaging system is able to disentangle, in real time, the respective contributions of the different light sources, and to compute, in real-time, depth of the scene. In some cases, the modulation signals for the light sources are orthogonal to each other and the reference signal is broadband. In some cases, the modulation codes for the light sources and the reference code are optimal codes that are determined by an optimization algorithm.
Abstract:
In exemplary implementations of this invention, a light field camera uses a light field dictionary to reconstruct a 4D light field from a single photograph. The light field includes both angular and spatial information and has a spatial resolution equal to the spatial resolution of the imaging sensor. Light from a scene passes through a coded spatial light modulator (SLM) before reaching an imaging sensor. Computer processors reconstruct a light field. This reconstruction includes computing a sparse or compressible coefficient vector using a light field dictionary matrix. Each column vector of the dictionary matrix is a light field atom. These light field atoms each, respectively, comprise information about a small 4D region of a light field. Reconstruction quality may be improved by using an SLM that is as orthogonal as possible to the dictionary.
Abstract:
A time-of-flight camera images an object around a corner or through a diffuser. In the case of imaging around a corner, light from a hidden target object reflects off a diffuse surface and travels to the camera. Points on the diffuse surface function as a virtual sensors. In the case of imaging through a diffuser, light from the target object is transmitted through a diffusive media and travels to the camera. Points on a surface of the diffuse media that is visible to the camera function as virtual sensors. In both cases, a computer represents phase and intensity measurements taken by the camera as a system of linear equations and solves a linear inverse problem to (i) recover an image of the target object; or (ii) to compute a 3D position for each point in a set of points on an exterior surface of the target object.
Abstract:
In illustrative implementations of this invention, light sources illuminate a surface with multi-spectral, multi-directional illumination that varies in direction, wavelength, coherence and collimation. One or more cameras capture images of the surface while the surface is illuminated under different lighting conditions. One or more computers take, as input, data indicative of or derived from the images, and determine a classification of the surface. Based on the computed classification, the computers output signals to control an I/O device, such that content displayed by the I/O device depends, at least in part, on the computed classification. In illustrative implementations, this invention accurately classifies a wide range of surfaces, including transparent surfaces, specular surfaces, and surfaces with few features.
Abstract:
In illustrative implementations of this invention, an imaging system includes multiple light sources that illuminate a scene, and also includes a lock-in time of flight camera. While the scene is illuminated by these light sources, each of the light sources is amplitude-modulated by a different modulation pattern, and a reference signal is applied to the lock-in time-of-flight camera. The modulation patterns and the reference signal are carefully chosen such that the imaging system is able to disentangle, in real time, the respective contributions of the different light sources, and to compute, in real-time, depth of the scene. In some cases, the modulation signals for the light sources are orthogonal to each other and the reference signal is broadband. In some cases, the modulation codes for the light sources and the reference code are optimal codes that are determined by an optimization algorithm.
Abstract:
In exemplary implementations, this invention comprises apparatus for retinal self-imaging. Visual stimuli help the user self-align his eye with a camera. Bi-ocular coupling induces the test eye to rotate into different positions. As the test eye rotates, a video is captured of different areas of the retina. Computational photography methods process this video into a mosaiced image of a large area of the retina. An LED is pressed against the skin near the eye, to provide indirect, diffuse illumination of the retina. The camera has a wide field of view, and can image part of the retina even when the eye is off-axis (when the eye's pupillary axis and camera's optical axis are not aligned). Alternately, the retina is illuminated directly through the pupil, and different parts of a large lens are used to image different parts of the retina. Alternately, a plenoptic camera is used for retinal imaging.
Abstract:
An active imaging system, which includes a light source and light sensor, generates structured illumination. The light sensor captures transient light response data regarding reflections of light emitted by the light source. The transient light response data is wavelength-resolved. One or more processors process the transient light response data and data regarding the structured illumination to calculate a reflectance spectra map of an occluded surface. The processors also compute a 3D geometry of the occluded surface.
Abstract:
In exemplary implementations of this invention, two LCD screens display a multi-view 3D image that has both horizontal and vertical parallax, and that does not require a viewer to wear any special glasses. Each pixel in the LCDs can take on any value: the pixel can be opaque, transparent, or any shade between. For regions of the image that are adjacent to a step function (e.g., a depth discontinuity) and not adjacent to a sharp corner, the screens display local parallax barriers comprising many small slits. The barriers and the slits tend to be oriented perpendicular to the local angular gradient of the target light field. In some implementations, the display is optimized to seek to minimize the Euclidian distance between the desired light field and the actual light field that is produced. Weighted, non-negative matrix factorization (NMF) is used for this optimization.
Abstract:
A camera acquires a 4D light field of a scene. The camera includes a lens and sensor. A mask is arranged in a straight optical path between the lens and the sensor. The mask including an attenuation pattern to spatially modulate the 4D light field acquired of the scene by the sensor. The pattern has a low spatial frequency when the mask is arranged near the lens, and a high spatial frequency when the mask is arranged near the sensor.
Abstract:
A camera acquires a 4D light field of a scene. The camera includes a lens and sensor. A mask is arranged in a straight optical path between the lens and the sensor. The mask including an attenuation pattern to spatially modulate the 4D light field acquired of the scene by the sensor. The pattern has a low spatial frequency when the mask is arranged near the lens, and a high spatial frequency when the mask is arranged near the sensor.