Abstract:
Methods and systems to enhance local repair in robust header compression (ROHC) decompressors (110, 114), which may improve network transmission efficiency and quality. One method uses lower layer information to enhance local repair at the decompressor (110, 114). Another method uses a User Datagram Protocol (UDP) checksum to enhance local repair at the decompressor (110, 114).
Abstract:
In one embodiment, the present invention comprises a vocoder having at least one input and at least one output, an encoder comprising a filter having at least one input operably connected to the input of the vocoder and at least one output, a decoder comprising a synthesizer having at least one input operably connected to the at least one output of the encoder, and at least one output operably connected to the at least one output of the vocoder, wherein the encoder comprises a memory and the encoder is adapted to execute instructions stored in the memory comprising classifying speech segments and encoding speech segments, and the decoder comprises a memory and the decoder is adapted to execute instructions stored in the memory comprising time-warping a residual speech signal to an expanded or compressed version of the residual speech signal.
Abstract:
A cell identification method is provided. The method includes determining a reception state in a wireless device and comparing a reception cycle to a subframe parameter in the wireless device. The method also includes identifying a subsequent wireless cell within a predetermined time of the comparison.
Abstract:
Systems, methodologies, and devices are described that facilitate transferring a subset of compression context from a source base station to a target base station during an inter-base station handover of a mobile device to facilitate establishment of compression context between the mobile device and target base station. The source base station can transfer a subset of compression context comprising static and semi-static context to the target base station during inter-base station handover to at least partially establish compression context between the mobile device and target base station prior to or during handover. The source base station can transmit, to the mobile device, indicator information related to compression context transferred. The target base station can at least partially establish compression context based on received subset of compression context to facilitate efficient communication with the mobile device and can establish any remaining portion of compression context with the mobile device after handover.
Abstract:
The invention provides method and apparatus for collaboration between a plurality of associated portlets in a portal server including: associating each portlet with a portlet descriptor describing context names; forming collaboration groups of portlets having corresponding context names for synchronized contents.
Abstract:
A method for sending an uplink order to active set base stations is disclosed. A new mode of operation for a wireless communication device is determined. A transmission is sent on an uplink control channel to active set base stations that indicates the new mode. The transmission from the wireless communication device is received on the E-DPCCH. It is determined if the transmission is an uplink order. The new mode of operation is transitioned to. Subsequent transmissions from the wireless communication device are interpreted using the new mode of operation if the transmission is an uplink order.
Abstract:
Aspects describe dynamically adjusting a reordering release timer to mitigate latency in a MAC-hs queue. Information already available at a mobile device is utilized for current packets and for missing packets to dynamically adjust the value of the T1 timer in an effort to mitigate latency. Further, the network might provide information regarding HARQ attempts, which mobile device can utilize for computing the dynamic value of the T1 timer. The network might signal the amount of time the mobile device should subtract from timer T1 for every HARQ transmission. Further, the T1 timer might only be dynamically adjusted for a subset of radio bearers.
Abstract:
A system and method enable wireless user equipment (UE) to undergo a serving radio network subsystem (SRNS) relocation to a radio network controller (RNC) that does not support a fast dormancy feature while maintaining synchronization with the packet-switched domain of the core network. The UE is made aware of whether the target RNC supports the fast dormancy feature by way of an indication provided to the UE in a reconfiguration message provided by the source RNC, that is, the RNC to which the UE was connected prior to the SRNS relocation. In this way, the UE can behave accordingly whether or not the target RNC supports the fast dormancy feature.
Abstract:
Adaptive De-Jitter Buffer for Voice over IP (VoIP) for packet switch communications. The de-jitter buffer methods and apparatus presented avoid playback of underflows while balancing end-to-end delay. In one example, the de-jitter buffer is recalculated at the beginning of each talkspurt. In another example, talkspurt packets are compressed upon receipt of all remaining packets.
Abstract:
Serving cell change procedures are provided from a target cell that instructs a mobile device to change its serving cell to the target cell. Receiving the serving cell change instruction from the target cell can help mobile device to receive the instruction in areas were a signal from a current serving cell is rapidly deteriorating. An acknowledgement can be sent from mobile device to target cell and can be based on a scrambling code change and/or can be based on a CQI31.