Abstract:
A method of manufacturing an electronic component includes: a coil forming step of forming a winding coil by a wire-shaped conductor; a coil fixing step of providing a coil fixation body that fixes the winding coil by an insulation resin; a magnetic body attaching step of providing a magnetic body such that the coil fixation body as a whole is covered by a composite magnetic material in which magnetic particles and a resin are mixed; a pressurizing step of pressurizing and molding an entirety; and a hardening step of hardening the magnetic body.
Abstract:
A dielectric waveguide includes a dielectric of a rectangular parallelepiped in shape, an input/output electrode formed on a first face of the dielectric, and a conductor film formed on an outer face of the dielectric. The input/output electrode extends from a first end which is a vertex or a neighborhood of the vertex of a first face (bottom face) of the dielectric inward on the bottom face; and environs along both sides and the first end of the input/output electrode include a conductor-unformed section in which there is no conductor film.
Abstract:
A surface-mount inductor having a coil formed by winding a wire and a molded body for accommodating the coil, wherein the coil includes: a pair of first rolls of wire of a rectangular section which are wound in a two-roll arrangement, both ends of the wire being positioned at their outermost turns;and a pair of second rolls wound in positions adjacent to and each on opposite sides of the first rolls to partially overlap the first rolls, whereby the ends of the wire are brought out from the outermost turns of the second rolls as lead ends, with winding axis of the coil being parallel with the molded body and the lead ends extending over the surface of the mounting face.
Abstract:
A method of producing a surface-mount inductor by encapsulating a coil with an encapsulation material containing a resin and a filler using a mold die assembly is provided. In the method, a tablet and a coil are used. The tablet is prepared by preforming the encapsulation material into a shape having a flat plate-shaped portion and a pillar-shaped convex portion on a peripheral thereof. The coil is a wound conductive wire having a cross-section of rectangular-shape. The coil is placed on the tablet to allow both ends of the coil to extend along an outer side surface of the pillar-shaped convex portion of the tablet. The coil and the encapsulation material are integrated together while clamping the both ends of the coil between an inner wall surface of the mold die assembly and the outer side surface of the pillar-shaped convex portion of the tablet, to form a molded body. External electrodes are formed on a surface of or around an outer periphery of the molded body in such a manner that the external electrodes are electrically connected to the both ends of the coil at least a portion of which is exposed to the surface of the molded body.
Abstract:
A coil component containing a drum core having a winding column, and an upper flange and a lower flange at both ends of the winding column, and a conductive wire wound around the winding column, a ring-type core having a through-hole accommodate the drum core in the through-hole, a pair of metal terminals arranged at outer side surfaces of the ring-type core; wherein each of the metal terminals includes: a side surface portion arranged to face the side surfaces of the ring-type core; a top surface portion bent away from the side surface to the top surface of the core; and a bottom surface portion bent away from the side surface portion to bottom surface of the core; the top surface portion has a pair of claws extending toward the center of the through-hole, the claws being bent toward the inside surface of the through-hole.
Abstract:
[Object]To provide a method of producing a surface-mount inductor which comprises an external electrode having high fixing strength with respect to an element body even in a high-humidity environment.[Means to Accomplish the Object]The method of producing a surface-mount inductor according to the present invention comprises the steps of: winding an electrically-conductive wire to form a coil; forming a core using a sealant primarily containing a metal magnetic powder and a resin in such a manner as to encapsulate the coil in the sealant while allowing each of opposite ends of the coil to be at least partially exposed on a surface of the core; reducing smoothness of a surface of at least a part of a portion of the core on which an external electrode is formed as compared to a surface therearound; and forming the external electrode on the core in such a manner as to be electrically conducted with the coil.
Abstract:
A surface mount inductor includes: a drum core including a spool having an upper collar and a lower collar; a coil wound around the drum core; and a ring core arranged on the drum core, wherein the metal terminals include first and second tongues projecting to an outer periphery of the lower collar, the ring core includes convex sections projecting to a lower surface from an edge, side surfaces of the first tongue and the second tongue sandwich side surfaces of the convex sections, and tip sections of the first tongue and the second tongue fix the ring core from below.
Abstract:
Disclosed is a variable output-type constant current source circuit capable of varying its output current in a stepwise manner without the complication in circuit configuration and the increase in size of a semiconductor circuit board for incorporating the circuit therein. The constant current source circuit comprises a first self-biasing type constant current circuit 3a configured such that transistors M1, M2 are operable to cooperatively supply a given voltage across a resistor RS to generate a stabilized current IR1. In order to vary the output current, the constant current source circuit includes a switching circuit 5 (transistor M5) connected in series to a series circuit connecting in series the transistor M1 and the resistor RS, and a second constant current circuit 4 connected in parallel to a series circuit connecting in series the transistor M1, the resistor RS and the transistor M5. The second constant current circuit 4 is also configured to serve as an activation circuit for the first constant current circuit 3a.
Abstract:
Disclosed is an input/output coupling structure for a dielectric waveguide resonator to be mounted on a printed circuit board, which comprises; a region defined in the printed circuit board and surrounded by a first conductive film formed on the front surface of the printed circuit board and connected to a microstrip line on the printed circuit board, a second conductive film formed on the back surface of the printed circuit board, and a conductive wall connecting the respective peripheries of the first and second conductive films; a first slot formed in the front surface of the region; and a second slot formed in a surface of the dielectric waveguide resonator which is disposed to be opposed to the region of the printed circuit board. The first and second slots are adapted to be disposed in opposed relation to one another. The coupling structure can achieve the connection between a dielectric waveguide resonator and a microstrip line without forming any input/output electrode on the resonator, to facilitate the application of the dielectric waveguide resonator to an electronic circuit even if it is intended to be used in millimetric-wave band.
Abstract:
Disclosed is a constant voltage power supply, which comprises an error amplifier VEA including a transistor M3, and a transistor M4 having the same ratio between channel width and channel length as that of the transistor M3. The gate and source of the transistor M4 are connected to the gate of a transistor M3 to form a current mirror circuit in conjunction with the transistor M3. Further, the drain of the transistor M4 is connected with a transistor M5 adapted to be switched in response to an external control signal Sg. For example, when the transistor M5 is in ON state, any signal amplification function of the transistor M3 is vanished away, and the gain of the error amplifier VEA is lowered. The circuit configuration for changing the gain of the error amplifier VEA makes it possible to strike a balance between high-speed response characteristic in an active mode and operational stability in a sleep mode, and reduce a circuit area required for being formed on an integrated circuit.