摘要:
A method and a wireless transmit/receive unit (WTRU), including a universal subscriber identity module (USIM), for identifying a closed subscriber group (CSG) cell are disclosed. The WTRU receives a broadcast from a cell including a cell identifier (ID). If the cell ID is associated with a CSG cell, the WTRU determines whether the CSG ID is programmed in the USIM. The cell broadcast may include a single bit information element (IE) indicating that the cell is a CSG cell. If the cell ID is a CSG ID, the cell ID may further include a plurality of fields which indicate at least one of a country, a region, an operator, and a home evolved Node-B (HeNB) number. The cell broadcast may further include a bit indicating whether the CSG cell is public or private. The cell broadcast may further include a bit indicating that emergency calls are allowed from all users.
摘要:
A method and apparatus for active mode discontinuous reception (DRX) synchronization and resynchronization operation are disclosed. A first entity sends a DRX indicator to a second entity. The first and second entities synchronize and resynchronize DRX operation based on the DRX indicator.
摘要:
Various methods for adjusting a reselection timer and cell ranking criteria are disclosed. The ranking criteria of a serving or neighbor cell, or a reselection timer in a wireless transmit/receive unit (WTRU), is adjusted based on how a serving cell signal measurement, (e.g., signal strength, signal quality), compares to a plurality of thresholds over a time interval. In another method, cell ranking criteria is adjusted based on a hysteresis value and a scaling factor when a maximum number of reselections is exceeded and a high mobility factor is detected. Furthermore, a method of reporting cell signal measurements is disclosed, whereby a time-to-trigger time (TTT) interval is started when the neighbor cell signal measurement rises above a reporting range threshold. If the serving cell signal measurement falls below a serving cell threshold, the TTT interval is adjusted and thereby a measurement report is transmitted during the TTT interval.
摘要:
A method and apparatus for enabling multi-band transmission includes transmitting a beacon on a first radio band and transmitting the beacon on a second radio band. The beacon includes coordination information for transmission on the first and second radio bands.
摘要:
A method and apparatus of adaptive sequence numbering in a wireless communication system includes determining whether or not a packet to be transmitted will be segmented. Based upon the segmentation determination, a determination as to whether or not to include a radio link controller (RLC) specific automatic repeat request (ARQ) sequence number (SN) to the packet is made. An indicator is added to indicate whether or not the RLC-specific ARQ SN is included in the packet. The packet is transmitted, and an acknowledgment (ACK) is received for the transmitted packet.
摘要:
A method and apparatus are provided for dynamic resource allocation, scheduling and signaling for variable data real time services (RTS) in long term evolution (LTE) systems. Preferably, changes in data rate for uplink RTS traffic are reported to an evolved Node B (eNB) by a UE using layer 1, 2 or 3 signaling. The eNB dynamically allocates physical resources in response to a change in data rate by adding or removing radio blocks currently assigned to the data flow, and the eNB signals the new resource assignment to the UE. In an alternate embodiment, tables stored at the eNB and the UE describe mappings of RTS data rates to physical resources under certain channel conditions, such that the UE uses the table to locally assign physical resources according to changes in UL data rates. Additionally, a method and apparatus for high level configuration of RTS data flows is also presented.
摘要:
In a wireless communication system including a wireless transmit/receive unit (WTRU) and an evolved Node B (eNB) capable of transmitting and receiving wireless data, a method and apparatus for reducing transmission overhead includes receiving an upper layer sequence number (SN). The upper layer SN is converted into a radio link control (RLC) service data unit (SDU) SN (SSN). An RLC protocol data unit (PDU) is generated for transmission including an RLC SSN, and incurred transmission overhead is optimized.
摘要:
A method and system for supporting voice over Internet protocol (VoIP) services over a wireless communication network are disclosed. Data is encoded at a coding rate specified by a controller for generating a VoIP packet. Among the encoded data, bits sensitive to errors and bits not sensitive to errors are identified and error protection is performed separately by a medium access control layer and/or physical layer. A header of the VoIP packet may be selectively compressed in accordance with an indication from the controller. A user datagram protocol (UDP)-Lite may be used for partial coverage of the sensitive bits. A comfort noise may be generated by a receiving end during a silence period without receiving a comfort noise packet from a transmitting end. If the VoIP packet is not fit into a currently assigned radio resource, the VoIP packet may be fragmented.
摘要:
High throughput (HT) devices are required to support defragmentation for reassembling a medium access control (MAC) service data unit (MSDU) or a MAC protocol data unit (MPDU) from its fragments, but may or may not fragment data to be transmitted. In one embodiment, a wireless transmit/receive unit (WTRU) includes a data defragmentation unit which defragments any fragmented data received by the WTRU, but the WTRU does not transmit fragmented data. In another embodiment, a WTRU includes a processor, a data fragmentation unit, a transmitter and a fragmentation selection unit. The processor determines whether or not the transmitter should transmit fragmented data. When fragmentation is desired, the processor controls the fragmentation selection unit such that the data fragmentation unit fragments data provided by the processor for transmission by the transmitter.
摘要:
A method and system applies MAC transmission opportunity (TXOP) protection for multiple mode operation in a WLAN system. In particular, MAC mechanisms are defined to support multiple mode CTS frames, and multiple mode CF-End frames sent by the AP, each in a format appropriate for the corresponding mode which also applies to a single mode as a trivial case. MAC mechanisms permit truncation of TXOP duration for releasing the unused portion of the TXOP when no further data for transmission is available. Release of unused protected TXOP is possible for both protected AP transmissions and STA transmissions.