Abstract:
Multiple propeller blades may be joined by tip connectors to form a closed propeller apparatus. The tip connectors may create continuous structure between adjacent tips of a first propeller and a second propeller. Use of the tip connectors may reduce vortices created near the tips of the propeller blades, which cause drag and slow the rotation of the propeller blades. The tip connectors may also reduce noise caused by rotation of propeller blades. Further, the tip connectors reduce or eliminate deflection of the propeller blades by creating a support structure to counteract forces that would otherwise cause deflection of the propeller blades, thereby improving propeller blade loading. In some embodiments, the tip connectors may be formed of a malleable material and/or include one or more joints that enable at least one of the propellers to modify a pitch of blades of the propeller.
Abstract:
This disclosure describes a configuration of an unmanned aerial vehicle (UAV) that will facilitate extended flight duration. The UAV may have any number of lifting motors. For example, the UAV may include four lifting motors (also known as a quad-copter), eight lifting motors (octo-copter), etc. Likewise, to improve the efficiency of horizontal flight, the UAV also includes a thrusting motor and propeller assembly that is oriented at approximately ninety degrees to one or more of the lifting motors. When the UAV is moving horizontally, it may be determined if the horizontal airspeed of the UAV exceeds an airspeed threshold. If the horizontal airspeed exceeds the airspeed threshold, the thrusting motor may be engaged and the thrusting propeller will aid in the horizontal propulsion of the UAV.
Abstract:
This disclosure describes a configuration of an unmanned aerial vehicle (UAV) that includes a substantially polygonal perimeter frame and a central frame. The perimeter frame includes a front wing, a lower rear wing, and an upper rear wing. The wings provide lift to the UAV when the UAV is moving in a direction that includes a horizontal component. The UAV may have any number of lifting motors. For example, the UAV may include four lifting motors (also known as a quad-copter), eight lifting motors (octo-copter), etc. Likewise, to improve the efficiency of horizontal flight, the UAV may also include one or more thrusting motors and corresponding thrusting propellers. When the UAV is moving horizontally, the thrusting motor(s) may be engaged and the thrusting propeller(s) will aid in the horizontal propulsion of the UAV.
Abstract:
This disclosure describes a configuration of an unmanned aerial vehicle (“UAV”) that will facilitate extended flight duration. The UAV may have any number of lifting motors. For example, the UAV may include four lifting motors (also known as a quad-copter), eight lifting motors (also known as an octo-copter), etc. Likewise, to improve the efficiency of horizontal flight, the UAV also includes a pivot assembly that may rotate about an axis from a lifting position to a thrusting position. The pivot assembly may include two or more offset motors that generate a differential force that will cause the pivot assembly to rotate between the lifting position and the thrusting position without the need for any additional motors or gears.