摘要:
There is provided a liquid crystal alignment layer comprising an alignment layer; and chemically bound to said alignment layer, a transport material. Also provided are methods for forming the liquid crystal alignment layer and the use thereof in displays for electronic apparatus.
摘要:
The invention relates to an alignment layer comprising a polymerized liquid crystal material with homeotrophic orientation, to methods of its preparation, to polymerizable liquid crystal compositions and liquid crystal polymers used for the preparation of the alignment layer, to liquid crystal devices comprising the alignment layer, and to a method of controlling the electrooptical steepness of a liquid crystal display comprising at least one alignment layer by varying the surface anchoring energy of the alignment layer.
摘要:
Methods for searching for possible forms of a sample and methods of screening a sample according to its form comprise disposing the sample in at least one receptacle that defines a capillary space, such as a capillary tube. The sample is solidified to generate at least one solid form or semisolid form, and the generated form is analyzed and classified. The analysis may determine differences in molecular arrangement of the various forms or characteristics that reflect the form. The methods may employ a plurality of samples, conditions, or receptacles in an effort to generate a variety of forms, so that all or a high percentage of possible forms are obtained.
摘要:
A method of forming a liquid crystal polymer layer includes: coating a substrate with a release layer; coating the release layer with an alignment layer capable of aligning a liquid crystal polymer layer; coating the alignment layer with a layer of a liquid crystal polymer material, thereby forming a liquid crystal polymer layer in which the molecules have a predetermined orientation; solidifying the layer of liquid crystal polymer; and dissolving the release layer in a liquid which does not harm the solidified liquid crystal polymer layer to form a self supporting film. The release layer and alignment layer can be combined into a single layer, such as for example a layer of polyvinyl alcohol which may be dissolved in water. Thicker or multi-layer films can be fabricated by using the first solidified layer as an alignment layer for a subsequently deposited liquid crystal polymer layer.
摘要:
To improve switching times, especially at low temperatures, one or more reactive liquid crystalline compounds is added to a liquid crystal mixture used in an electrooptical system. The electrooptical system comprises a PDLC film comprising a liquid crystal mixture forming micro- droplets in an optically isotropic, transparent polymer matrix between 2 electrode layers. The reactive liquid crystalline compounds are of formula II, R′—G′—R″, wherein R′, G′ and R″ are as defined herein. The liquid crystal mixture comprises one or more compounds of the formula I wherein R, A1, A2, Z1, Z2, X1, X2, Q, Y and n are as defined herein.
摘要:
The invention relates to a process as described in claim of preparing a reflective film comprising a layer of a polymerized mesogenic material with helically twisted structure, wherein the helix axis is perpendicular to the film plane, and containing regions with varying helical pitch, to a reflective film obtainable by such a process, to the use of such a reflective film as reflective broadband or notch polarizer or as a multicolored film or image in liquid crystal displays, as color filter, in effect pigments, for decorative or security applications, and to a liquid crystal display comprising a liquid crystal cell and a reflective polarizer as described in the foregoing and the following, and optionally further comprising one or more compensaters or polarizers.
摘要:
The invention relates to cholesteric polymer flakes obtainable from a chiral polymerizable mesogenic material, to methods of manufacturing such cholesteric flakes, to the use of certain chiral and achiral polymerizable compounds with one or more terminal polymerizable groups for the manufacturing of such flakes and to the use of such cholesteric flakes as effect pigments in spraying or printing inks or paints or colored plastics for different applications, especially for automotive use, cosmetic products and security applications.
摘要:
An electroptical system which between 2 electrode layers contains a PDLC film comprising a liquid crystal mixture forming micro-droplets in an optically isotropic, transparent polymer matrix, in which one of the refractive indices of the liquid crystal mixture is matched to the refractive index of the polymer matrix, which exhibits an electrically switchable transparency essentially independent of the polarization of the incident light, the precursor of the PDLC film of which comprises one or more monomers, oligomers and/or prepolymers and a photoinitiator, and is cured photoradically, the liquid crystal mixture of which comprises one or more compounds of the formula I in which the substituents are defined herein characterized in that the liquid crystal mixture additionally contains one or more reactive liquid crystalline compounds in order to obtain improved switching times especially at low temperatures.
摘要:
The invention relates to a liquid material in the form of cholesteric polymer network, wherein the polymerized material is obtainable by copolymerization of a compound (a) having at least two polymerizable functional groups and a chiral polymerizable compound (b), which is a terpinoid and to novel polymerizable terpinoids.
摘要:
The invention relates to copolymers made from mono-reactive liquid and/or di-reactive liquid crystals which can be photopolymerized to form copolymers and to novel reactive liquid crystal compound having a nematic phase. Preferentially the reactive liquid crystal is polymerized while in the liquid crystal phase to produce an oriented birefringent polymer film. To do this, the reactive liquid crystal, in its nematic or smectic phase is aligned. (by well known techniques such as rubbed polyimide, etc.) and the thin film containing a small amount of photoinitiator, is subjected to ultraviolet light whereupon it polymerizes into a thin, aligned polymer film.