Abstract:
A radiation imaging system includes pixel array, scanning circuit to scan rows of the pixel array, and readout circuit to read signals from the pixel array. Each pixel includes converter to generate electric signal corresponding to radiation and transistor connected to the converter. The readout circuit reads signal from the converter via the transistor. The system performs image capturing modes and conditioning mode of conditioning a threshold voltage of the transistor. In the conditioning mode, the scanning circuit supplies, to a gate of the transistor, an OFF voltage different from OFF voltages in the image capturing modes. The scanning circuit scans the rows in units of at least one row in the image capturing modes, and scans the rows in units of at least two rows in the conditioning mode.
Abstract:
The present invention provides a technique advantageous in suitably determining the irradiation end timing in a radiation imaging apparatus that can perform AEC.The radiation imaging apparatus comprises a sensor configured to detect radiation and a control unit, wherein the control unit generates, after the start of radiation irradiation, an evaluation value indicating the stability of a radiation irradiation intensity based on a sensor signal from the sensor, and the control unit outputs, in response to the evaluation value satisfying a predetermined condition, a signal indicating that the radiation irradiation intensity has stabilized.
Abstract:
A radiation imaging apparatus including conversion elements acquiring a radiation image and detectors, a readout unit and a controller is provided. In a first operation, the controller causes the readout unit to output a composition signal obtained by composing signals from the detectors, detects irradiation with radiation based on the composition signal, and shifts to a second operation. In the second operation, the controller acquires first signals individually read out from the detectors, decides a signal component, of the composition signal, which is output from a selected detector of the detectors in accordance with a ratio of the first signal from the selected detector to a sum of the first signals, and acquires an integrated dose of radiation incident on the selected detector based on the signal component and the first signal of the selected detector.
Abstract:
A radiation imaging apparatus comprises a sensor portion including a pixel array configured to acquire an image signal corresponding to radiation, and a plurality of detection elements arranged in the pixel array and configured to detect the radiation, and a readout circuit configured to read out the image signal from the sensor portion, wherein the readout circuit includes a signal processing circuit arranged to combine and process signals from the plurality of detection elements if determining the presence or absence of radiation irradiation, and to process a signal for each detection element or combine and process signals from a number of detection elements from among the plurality of detection elements, the number being less than the number of detection elements that include the plurality of detection elements, if determining a radiation dose.
Abstract:
A radiation imaging apparatus comprises a sensor portion including a pixel array configured to acquire an image signal corresponding to radiation, and a plurality of detection elements arranged in the pixel array and configured to detect the radiation, and a readout circuit configured to read out the image signal from the sensor portion, wherein the readout circuit includes a signal processing circuit arranged to combine and process signals from the plurality of detection elements if determining the presence or absence of radiation irradiation, and to process a signal for each detection element or combine and process signals from a number of detection elements from among the plurality of detection elements, the number being less than the number of detection elements that include the plurality of detection elements, if determining a radiation dose.
Abstract:
A detection apparatus includes a plurality of conversion elements, an interlayer insulating layer, and a covering layer. Each of the plurality of conversion elements includes an electrode electrically connected to a corresponding one of a plurality of switching elements and a semiconductor layer disposed on the electrode. The interlayer insulating layer is disposed so as to cover the plurality of switching elements and composed of an organic material, and has a surface including a first region and a second region located outside the first region. The electrodes are disposed on the surface of the interlayer insulating layer in the first region. The covering layer is disposed on the surface of the interlayer insulating layer in the second region and composed of an inorganic material.
Abstract:
A radiation imaging apparatus includes a first control line electrically connected to a control electrode of an imaging switching element, a second control line electrically connected to a control electrode of a detection switching element, a signal line electrically connected to a main electrode of the detection switching element, a capacitance line arranged to be capacitively coupled with the signal line, wherein the capacitance line is different from the first control line and the second control line, a driving unit electrically connected to the second control line and the capacitance line and configured to apply a voltage to the detection switching element and the capacitance line, and a control unit configured to control the driving unit to apply, in a case where an on-state or off-state voltage is applied to the detection switching element, a voltage having an opposite polarity to that of the voltage to the capacitance line.
Abstract:
A radiation imaging apparatus is provided. The apparatus comprises first pixels arranged in an image sensing region to obtain a radiation image, a second pixel configured to obtain a dose of incident radiation and a control unit configured to control the first pixels and the second pixel. The control unit causes the first pixels to accumulate charge corresponding to a radiation dose, while causing the second pixel to operate in a detection cycle determined based on irradiation information of radiation before irradiation with radiation, obtains a dose of incident radiation for each detection cycle, and corrects the obtained radiation dose in accordance with an amount of noise output from the second pixel operating in the detection cycle.
Abstract:
A radiation imaging apparatus includes a plurality of conversion elements configured to convert radiation into an electric signal to obtain a radiation image, a sensor for monitoring radiation, a processing unit configured to process signals output from output electrodes of the plurality of conversion elements and an output electrode of the sensor, and a shield. The signal output from the output electrode of the sensor is supplied to the processing unit via a signal line. The shield is arranged such that capacitive coupling between the output electrodes of the plurality of conversion elements and the signal line is reduced.
Abstract:
A radiation imaging apparatus includes a plurality of pixels, each of which includes a conversion element and a transistor, a plurality of drive lines connected to gates of the transistors, a drive circuit unit configured to supply a voltage to the plurality of drive lines, and a control unit configured to control the drive circuit unit. The control unit performs control of causing the drive circuit unit to apply a different voltage that is between the OFF voltage and the ON voltage and is different from the OFF voltage and the ON voltage to the plurality of drive lines in a different period different from a period in which storage control is performed and a period in which read control is performed.