摘要:
A friction member for a brake mechanism in a camera shutter is provided. The friction member includes a carbon nanotube polymer composite. The carbon nanotube polymer composite includes a polymer and a carbon nanotube structure mixed with the polymer. The carbon nanotube structure includes a plurality of carbon nanotubes joined by van der Waals attraction force. The camera shutter using the friction member is also provided. The camera shutter includes a drive mechanism and a brake mechanism. The drive mechanism includes a blade driving lever having a moving path. The brake mechanism includes two abovementioned friction members and a brake lever clamped between the two friction members. The brake lever is located at a termination of the moving path to brake the blade driving lever.
摘要:
A shutter blade is provided. The shutter blade includes at least two carbon nanotube composite layers stacked on each other. Each carbon nanotube composite layer includes a polymer and a carbon nanotube structure. The carbon nanotube structure includes a plurality of carbon nanotubes substantially oriented along a same direction. The carbon nanotube structure also includes a plurality of carbon nanotube wires extending along a same direction. A shutter using the shutter blade is also provided. The shutter includes a shutter blade structure including at least two the above-mentioned shutter blades.
摘要:
A liquid crystal display screen is provided. The liquid crystal display screen includes a capacitance type touch panel, an upper board, a liquid crystal layer, and a lower board. The capacitance type touch panel includes a substrate and a transparent conductive layer located on the substrate. The upper board includes an upper substrate, an upper electrode, and an upper alignment layer. The transparent conductive layer is configured to be an upper optical polarizer. The transparent conductive layer is a carbon nanotube layer having an anisotropic conductivity. The upper substrate is the substrate of the capacitance type touch panel.
摘要:
A transmission electron microscope micro-grid includes a support ring and a sheet-shaped carbon nanotube structure. The support ring has a through hole defined therein. The sheet-shaped carbon nanotube structure has a peripheral edge secured on the support ring and a central area suspended above the through hole. The sheet-shaped carbon nanotube structure includes at least one linear carbon nanotube structure or at least one carbon nanotube film.
摘要:
A method for manufacturing a transmission electron microscope (TEM) micro-grid is provided. A support ring and a sheet-shaped carbon nanotube structure precursor are first provided. The sheet-shaped carbon nanotube structure precursor is then disposed on the support ring. The sheet-shaped carbon nanotube structure precursor is cut to form a sheet-shaped carbon nanotube structure in desired shape. The sheet-shaped carbon nanotube structure is secured on the support ring.
摘要:
A display device includes a touch panel. The touch panel includes at least one transparent conductive layer. The at least one transparent conductive layer is a carbon nanotube layer including a plurality of carbon nanotubes, and the plurality of carbon nanotubes are substantially arranged along the same axis, and the density of the carbon nanotube layer is not constant.
摘要:
A heating tile includes an upper substrate, a lower substrate and a heating module. The heating module is disposed between the upper substrate and the lower substrate. The heating module includes a first electrode, a second electrode and a heating element being electrically connected with the first electrode and the second electrode. The heating element includes a carbon nanotube layer structure. The heating tile defines a first side surface and a second side surface opposite to the first side surface. The first electrode and the second electrode are both oriented from the first side surface to the second side surface. The first electrode includes two exposed first ends. The second electrode includes two exposed second ends.
摘要:
A transmission electron microscope (TEM) micro-grid includes a pure carbon grid having a plurality of holes defined therein and at least one carbon nanotube film covering the holes. A method for manufacturing a TEM micro-grid includes following steps. A pure carbon grid precursor and at least one carbon nanotube film are first provided. The at least one carbon nanotube film is disposed on a surface of the pure carbon grid precursor. The pure carbon grid precursor and the at least one carbon nanotube film are then cut to form the TEM micro-grid in desired shape.
摘要:
A method for making a carbon nanotube film includes fabricating a carbon nanotube array grown on a substrate. A drawing tool and a supporting member, having a surface carrying static charges, are provided. The static charges of the surface of the supporting member are neutralized. A plurality of carbon nanotubes in the carbon nanotube array is contacted and chosen by the drawing tool. The drawing tool is then moved along a direction away from the carbon nanotube array, thereby pulling out a carbon nanotube film. The carbon nanotube film is adhered the surface of the supporting member.
摘要:
The present disclosure relates to a method for making a carbon nanotube carbon nanotube structure. The method includes steps of providing a tubular carbon nanotube array; and drawing out a carbon nanotube structure from the tubular carbon nanotube array by using a drawing tool. The carbon nanotube structure is a carbon nanotube film or a carbon nanotube wire.