摘要:
An acoustic energy delivery system for delivering acoustic energy to an implantable medical device (“IMD”). The system includes an IMD having a power source and an energy delivery device. The energy delivery device includes a controller and an array of ultrasonic elements electrically coupled to the controller and configured to deliver acoustic energy to the IMD. Methods of delivering acoustic energy to an IMD are also disclosed.
摘要:
Devices, systems, and methods for selectively activating medical devices are disclosed. A medical device in accordance with an illustrative embodiment includes an energy storage device, an acoustic transducer configured to convert an acoustic signal into an electrical signal, a signal detector configured to generate a trigger signal when the electrical signal exceeds a specific threshold established by a biasing element, a control circuit, and an activation/deactivation switch configured to switch the medical device between an inactive state and an active state in response to the trigger signal.
摘要:
An intra-body ultrasonic signal can be converted into a first electrical signal, a local oscillator signal can be generated in an implantable system. The first electrical signal and the local oscillator signal can be mixed in an implantable system, such as to generate a demodulated signal, processed, such as using a filter. The filtered, demodulated signal can be further processed, such as implantably determining a peak amplitude of the first portion of the demodulated signal received from the filter over a time interval, implantably generating a dynamic tracking threshold that starts at an amplitude proportional the first portion of the demodulated signal and exponentially decays over a time interval, and determining a noise floor in the absence of a received intra-body ultrasonic signal and implantably comparing the peak amplitude and the tracking threshold and generate the digital output based on the difference.
摘要:
Systems and methods for adapting the performance of an acoustic communication link with an implantable medical device (IMD) are disclosed. An illustrative method includes initiating an acoustic link with the IMD, measuring an initial performance of the acoustic link, determining whether the initial performance of the acoustic link is adequate, adjusting an operating parameter related to the acoustic link in the event the initial performance of the acoustic link is inadequate, measuring a performance of the acoustic link in response to the adjusted operating parameter, and setting the operating parameter to a prior setting if the measured performance of the acoustic link does not improve in response to the adjusted operating parameter.
摘要:
One example includes a battery that includes a stack of at least one substantially planar anode and at least one substantially planar cathode, wherein the stack defines a contoured exterior, and a battery housing enclosing the stack, the battery housing defining a battery housing exterior, wherein the contoured exterior of the stack is shaped to conform to a contoured interior of the battery housing that approximately conforms to the battery housing exterior, the battery produced by the process of modeling, using fluid dynamics, an exterior of a biocompatible housing and shaping the battery housing to conform to at least some of the exterior of the biocompatible housing.
摘要:
A piezoelectric element within an external ultrasonic transducer assembly can be used for wireless communication of data between an implantable device and the external ultrasonic transducer assembly such as using ultrasonic energy coupled to a flexible portion of a housing of the transducer assembly. The flexible portion can be configured to contact skin of a body containing the implantable device. The transducer assembly can be configured to respectively transmit or receive ultrasonic energy using at least partially overlapping respective ranges of resonant frequencies.
摘要:
The present subject matter provides apparatus and methods for testing high dielectric capacitors. A testing process whereby voltage and temperature is varied to provide temperature dependent plots to determine the reliability of a capacitor is provided. A testing system is demonstrated to measure capacitor reliability and/or relative capacitor reliability.
摘要:
A plurality of separate indications of a scanner field can be received using a corresponding plurality of scanner field sensors of an implantable medical device (IMD). In an example, the IMD can be switched from a first therapy mode to a second therapy mode using one or more of the plurality of scanner field sensors, and from the second therapy mode back to the first therapy mode using each of the plurality of scanner field sensors. In certain examples, shock therapy can be terminated or inhibited using a detected proximity of the IMD to a magnetic resonance imaging (MRI) scanner, or antitachycardia pacing (ATP) can be terminated or inhibited using a detected active scan of the MRI scanner.
摘要:
This document discusses, among other things, an implantable apparatus comprising a plurality of solid state electronic circuits disposed at a plurality of different locations in the apparatus, a plurality of ionizing radiation exposure sensors disposed at the different locations and configured to generate an indication of a non-single-event-upset (non-SEU) effect to the solid state electronic circuit from an exposure to ionizing radiation, wherein the ionizing radiation exposure sensors respectively monitor at least two different types of operating parameters of respectively correspondingly located solid state circuits, and a controller circuit communicatively coupled to the ionizing radiation exposure sensors, wherein the controller circuit is configured to quantify the effect to the solid state electronic circuits using the different monitored operating parameters.
摘要:
An implantable medical device includes a dual-use sensor such as a single accelerometer that senses an acceleration signal. A sensor processing circuit processes the acceleration signal to produce an activity level signal and a heart sound signal. The implantable medical device provides for rate responsive pacing in which at least one pacing parameter, such as the pacing interval, is dynamically adjusted based on the physical activity level. The implantable medical device also uses the heart sounds for pacing control purposes or transmits a heart sound signal to an external system for pacing control and/or diagnostic purposes.