摘要:
Systolic timing intervals are measured in response to delivering pacing energy to a pacing site of a patient's heart. An estimate of a patient's acute response to cardiac resynchronization therapy (CRT) for the pacing site is determined using the measured systolic timing intervals. The estimate is compared to a threshold. The threshold preferably distinguishes between acute responsiveness and non-responsiveness to CRT for a patient population. An indication of acute responsiveness to CRT for the pacing site may be produced in response to the comparison.
摘要:
Methods and systems for assessing pulmonary or systemic vascular resistance in a patient using pressure measurements are disclosed. An illustrative method of measuring pulmonary vascular resistance includes electrically inducing a retrograde pressure pulse within the heart, sensing at least one arterial pressure parameter in response to the retrograde pressure pulse using a pressure sensor located within a pulmonary artery, and computing a value of the pulmonary vascular resistance using the at least one sensed arterial pressure parameter. Data from multiple pulmonary vascular resistance assessments can be taken over an extended period of time within the patient to aid in detecting an underlying cardiac or pulmonary condition such as cardiogenic pulmonary edema.
摘要:
Various system embodiments comprise a stimulator adapted to deliver a stimulation signal for a heart failure therapy, a number of sensors adapted to provide at least a first measurement of a heart failure status and a second measurement of the heart failure status, and a controller. The controller is connected to the stimulator and to the number of sensors. The controller is adapted to use the first and second measurements to create a heart failure status index, and control the stimulator to modulate the signal using the index. Other aspects and embodiments are provided herein.
摘要:
A cardiac rhythm management system includes a heart sound detector providing for detection of the third heart sounds (S3). An implantable sensor such as an accelerometer or a microphone senses an acoustic signal indicative heart sounds including the second heart sounds (S2) and S3. The heart sound detector detects occurrences of S2 and starts S3 detection windows each after a predetermined delay after a detected occurrence of S2. The occurrences of S3 are then detected from the acoustic signal within the S3 detection windows.
摘要:
In an example, physiologic information about a patient can be obtained and mapped to a first set of fuzzy logic membership functions, and a symptom status can be derived from the mapping of the physiologic information using a first fuzzy logic inference. In an example, the symptom status can be mapped to a second set of fuzzy logic membership functions, and a disease status can be derived from the mapping of the symptom status to the second set of fuzzy logic membership functions using a second fuzzy logic inference.
摘要:
A cardiac rhythm management system provides for the trending of a third heart sound (S3) index. The S3 index is a ratio, or an estimate of the ratio, of the number of S3 beats to the number of all heart heats, where the S3 beats are each a heart beat during which an occurrence of S3 is detected. An implantable sensor such as an accelerometer or a microphone senses an acoustic signal indicative heart sounds including S3. An S3 detector detects occurrences of S3 from the acoustic signal. A heart sound processing system trends the S3 index on a periodic basis to allow continuous monitoring of the S3 activity level, which is indicative of conditions related to heart failure.
摘要:
A cardiac rhythm management system provides for ambulatory monitoring of hemodynamic performance based on quantitative measurements of heart sound related parameters for diagnostic and therapeutic purposes. Monitoring of such heart sound related parameters allows the cardiac rhythm management system to determine a need for delivering a therapy and/or therapy parameter adjustments based on conditions of a heart. This monitoring also allows a physician to observe or assess the hemodynamic performance for diagnosing and making therapeutic decisions. Because the conditions of the heart may fluctuate and may deteriorate significantly between physician visits, the ambulatory monitoring, performed on a continuous or periodic basis, ensures a prompt response by the cardiac rhythm management system that may save a life, prevent hospitalization, or prevent further deterioration of the heart.
摘要:
Systems and methods to monitor cardiac function using information indicative of lead motion are described. In an example, a system including an implantable medical device can include a receiver circuit configured to be electrically coupled to conductor comprising a portion of an implantable lead and be configured to obtain information indicative of a movement of the implantable lead due at least in part to a motion of a heart. The system can include a sensing circuit configured to obtain information indicative of cardiac electrical activity. The system can include a processor circuit configured to construct a template representative of a contraction of the heart, where the template can be constructed using the information indicative of the movement of the implantable lead due at least in part to the motion of the heart during the contraction, and using the information indicative of the cardiac electrical activity sensed during the contraction.
摘要:
An implantable medical device includes a dual-use sensor such as a single accelerometer that senses an acceleration signal. A sensor processing circuit processes the acceleration signal to produce an activity level signal and a heart sound signal. The implantable medical device provides for rate responsive pacing in which at least one pacing parameter, such as the pacing interval, is dynamically adjusted based on the physical activity level. The implantable medical device also uses the heart sounds for pacing control purposes or transmits a heart sound signal to an external system for pacing control and/or diagnostic purposes.
摘要:
Systems and methods involve an implantable device configured to perform at least one cardiac-related function, a patient-external respiratory therapy device, and a communication channel configured to facilitate communication between the implantable device and the respiratory therapy device. The implantable and respiratory therapy devices operate cooperatively via the communication channel to provide one or more of patient monitoring, diagnosis, and therapy. The communication channel may be configured to facilitate communication between an external processing system and at least one of the implantable device and the respiratory therapy device. The processing system is communicatively coupled to at least one of the implantable and respiratory therapy devices via the communication channel to provide one or more of patient monitoring, diagnosis, and therapy.