Abstract:
A device in a valve on high voltage potential level and in a high voltage converter station comprises members arranged on high voltage level and adapted to detect parameters of a voltage divider circuit consisting of resistances (24, 25) and capacitors (27, 28) connected in series and across each thyristor of said valve. The capacitors are of self-healing type, in which from the point of time for occurring of a possible fault thereof the capacitance is gradually reduced, and said members are adapted to carry out measurements so as to determine whether the capacitance of the capacitors is changed over the time.
Abstract:
A device for supervising the cooling of a cooling system of a valve of a high voltage converter station located on high voltage potential level comprises members (31) located on high voltage potential level and adapted to detect the temperature at cooling blocks (32) of the valve on high voltage potential level and send values so detected to first control units (3) for controlling semiconductor components (4) of the valve. The first control units have means (20) for treating said values detected and the first control units are adapted to send data resulting from said treatment to an arrangement (16) for supervising said valve located on low potential level.
Abstract:
A gas-insulated semiconductor valve for high voltage power has an elongated valve stack with a plurality of semiconductor elements. The valve stack is provided with electrostatic shields for reducing the stresses on the insulating medium. The shields comprise a plurality of annular shields distributed along the longitudinal axis of the valve stack. The shields are arranged in planes which are substantially perpendicular to the longitudinal axis of the stack and surround the valve stack. The curved part of each shield has a substantially constant radius of curvature.
Abstract:
Apparatus and method for limiting current in a direct voltage network of a HVDC power distribution system. A direct voltage network is connected to an alternating voltage network through a VSC-converter. At least one parallel connection including a semiconductor switching element is connected in series with the direct voltage network. A surge diverter is connected in parallel with the semiconductor switching element. During a high current condition in the direct voltage network, the switching element is switched off interrupting the current flow which is then diverted through the surge diverter which reduces the current flowing in the direct voltage network. By inserting a plurality of parallel connections, and selectively turning off a number of the semiconductor switching elements, a number of different levels of over current conditions in the direct voltage network may be controlled.
Abstract:
An apparatus and method for communication between low potential level and a valve of a high voltage converter station located on high voltage potential level is provided. The apparatus comprises means adapted to send serial messages on light conductors between a valve control unit and a first control unit for controlling semiconductor components of the valve of turn-on type on high voltage potential level in periods of time when the respective light conductor is free from signals associated with a change in the conducting state of the semiconductor component, such as turn-on and/or indications signals.
Abstract:
A high voltage power converter has a number of thyristors interconnected. Symmetrical voltage dividers maintain equal voltage distribution across the thyristors. Each thyristor has a plurality of inductors associated therewith for reducing rapid current increases through the thyristors during firing which might injure the components and generate radio frequency interference.