Abstract:
Disclosed herein are embodiments of a LED fluorescent tube replacement lamp and lighting modules from which the lamp is constructed. One embodiment of a replacement lamp includes a plurality of interchangeable lighting modules that are configured to be electrically connected to adjacent modules. The interchangeable lighting modules can include end modules each having an end cap with pin connectors, at least one of the end modules includes electrical circuitry connected to the pin connectors for powering the modules. The lighting modules can also be center unit modules having LEDs mounted to a circuit board. The replacement lamps can be made from conceivable configurations of the lighting modules, requiring removal of only one module for repair or replacement.
Abstract:
An LED based light for replacing an incandescent bulb comprises a base having a first end and a second end. A connector is fixed to the first end of the base and adapted to physically connect to an incandescent light fixture. A light structure extends from the second end of the base and has an inner surface defining a cavity and an opposing exterior outer surface, and at least one LED is arranged outward from the inner surface. A heat dissipating structure for the at least one LED extends into the cavity.
Abstract:
Disclosed herein is an LED-based light for replacing a fluorescent bulb in a conventional fluorescent light fixture. The LED-based light includes a housing having a first end opposing a second end, a circuit board disposed within the housing and extending along a longitudinal axis of the housing, at least one LED mounted to the circuit board, at least one end cap disposed on one of the first and second ends of the housing, the end cap including a switch and at least one electrically conductive pin configured for physical and electrical connection to the light fixture; and circuitry configured to provide a current path between the at least one LED and the at least one electrically conductive pin, wherein the switch is configured to selectively disconnect the current path.
Abstract:
An LED-based light configured for replacing a conventional fluorescent light in a fluorescent light fixture comprises: an LED circuit board including at least one LED; a power supply circuit board configured to supply power to the at least one LED; an end cap carrying at least one pin configured for connection to the fixture; a pin connector header including a first body retentively supporting at least one pin connecting lead and configured to engage the power supply circuit board such that the pin connecting lead is positioned to electrically connect the power supply circuit board and the pin; and a circuit connector header including a second body retentively supporting at least one circuit connecting lead and configured to engage the power supply circuit board such that the circuit connecting lead is positioned to electrically connect the power supply circuit board and the LED circuit board.
Abstract:
Disclosed herein are embodiments of a LED fluorescent tube replacement lamp and lighting modules from which the lamp is constructed. One embodiment of a replacement lamp includes a plurality of interchangeable lighting modules that are configured to be electrically connected to adjacent modules. The interchangeable lighting modules can include end modules each having an end cap with pin connectors, at least one of the end modules includes electrical circuitry connected to the pin connectors for powering the modules. The lighting modules can also be center unit modules having LEDs mounted to a circuit board. The replacement lamps can be made from conceivable configurations of the lighting modules, requiring removal of only one module for repair or replacement.
Abstract:
An LED-based light has an elongate housing having a longitudinal axis and a vertical axis, the housing defined by a base and two canted outer walls meeting opposite the base, the housing defining a cavity. An LED circuit board on which a plurality of LEDs are located is positioned within the cavity. End caps are positioned at opposite ends of the housing.
Abstract:
An LED-based light can be installed in a conventional light fixture. The LED-based light can include a sensor operable to output a signal indicative of whether an area of one or more of the rooms is in an occupied state or a non-occupied state, and the LED-based light can also include an LED controller operable to control at least one LED in the light in response to the signal. Additionally, the LED-based light can include a transmitter operable to output the signal indicative of whether the area is in the occupied state or the non-occupied state to a building environment regulator.
Abstract:
An LED-based light has an elongate housing having a longitudinal axis and a vertical axis, the housing defined by a base and two canted outer walls meeting opposite the base, the housing defining a cavity. An LED circuit board on which a plurality of LEDs are located is positioned within the cavity. End caps are positioned at opposite ends of the housing.
Abstract:
Techniques are described for a lighting system in which light sources are controllable using signals sent over a wireless mesh network. During a commissioning process, a user interface (UI) may present a representation of nodes (e.g., light sources, sensors, controllers, etc.) that are broadcasting a wireless advertising signal. In response to a selection of a particular node, a wireless message may be sent to instruct the selected node to provide a visual indication of its presence, such as a flashing light. The visual indication may enable a user to discern the physical location of the node, such that each node may be added to the mesh network and, in some instances, to a group of nodes. The UI may also enable the definition of scenes, where each scene describes the brightness level or other operating characteristics of particular light source(s) and/or group(s) of light sources when the scene is active.
Abstract:
For controlling operation of a light source, a method of associating a light source with an area for which the light source is positioned to provide lighting comprises: identifying, based on a determined physical position of a light source, one of a plurality of areas as the area for which the light source is positioned to provide lighting; identifying at least one desired lighting condition for the identified area; and controlling, using a processor, operation of the light source based on the identified at least one desired lighting condition for the identified area.