Abstract:
A virtual security coprocessor is created in a first processing system. The virtual security coprocessor is then transferred to a second processing system, for use by the second processing system. For instance, the second processing system may use the virtual security coprocessor to provide attestation for the second processing system. In an alternative embodiment, a virtual security coprocessor from a first processing system is received at a second processing system. After receiving the virtual security coprocessor from the first processing system, the second processing system uses the virtual security coprocessor. Other embodiments are described and claimed.
Abstract:
Embodiments of an invention for memory management in secure enclaves are disclosed. In one embodiment, a processor includes an instruction unit and an execution unit. The instruction unit is to receive a first instruction and a second instruction. The execution unit is to execute the first instruction, wherein execution of the first instruction includes allocating a page in an enclave page cache to a secure enclave. The execution unit is also to execute the second instruction, wherein execution of the second instruction includes confirming the allocation of the page.
Abstract:
A virtual security coprocessor is created in a first processing system. The virtual security coprocessor is then transferred to a second processing system, for use by the second processing system. For instance, the second processing system may use the virtual security coprocessor to provide attestation for the second processing system. In an alternative embodiment, a virtual security coprocessor from a first processing system is received at a second processing system. After receiving the virtual security coprocessor from the first processing system, the second processing system uses the virtual security coprocessor. Other embodiments are described and claimed.
Abstract:
A virtual security coprocessor is created in a first processing system. The virtual security coprocessor is then transferred to a second processing system, for use by the second processing system. For instance, the second processing system may use the virtual security coprocessor to provide attestation for the second processing system. In an alternative embodiment, a virtual security coprocessor from a first processing system is received at a second processing system. After receiving the virtual security coprocessor from the first processing system, the second processing system uses the virtual security coprocessor. Other embodiments are described and claimed.
Abstract:
An apparatus and method are described for implementing a trusted dynamic launch and trusted platform module (TPM) using a secure enclave. For example, a computer-implemented method according to one embodiment of the invention comprises: initializing a secure enclave in response to a first command, the secure enclave comprising a trusted software execution environment which prevents software executing outside the enclave from having access to software and data inside the enclave; and executing a trusted platform module (TPM) from within the secure enclave, the trusted platform module securely reading data from a set of platform control registers (PCR) in a processor or chipset component into a memory region allocated to the secure enclave.