Abstract:
The application relates to a binaural hearing assistance system comprising first and second hearing assistance devices adapted for being located at or in left and right ears of a user. The application further relates to a method of operating a binaural hearing assistance system. The object of the present application is to provide an improved binaural hearing assistance system. The problem is solved in that each of the first and second hearing assistance devices comprises a) a first wireless interface comprising first antenna and transceiver circuitry adapted for establishing a first communication link to the respective other hearing assistance device based on near-field communication; b) a second wireless interface comprising second antenna and transceiver circuitry adapted for establishing a second communication link to an auxiliary device based on far-field communication; c) a link control unit operatively coupled to the second antenna and transceiver circuitry and configured to repeatedly provide a second link quality measure indicative of a link quality of the second communication link; wherein the first and second hearing assistance devices are configured to exchange said respective second link quality measures between them via said first and/or second communication links. This has the advantage of providing a robust and flexible system. The invention may e.g. be used for binaural hearing assistance systems, e.g. binaural hearing aid systems, where audio quality and power consumption has to be mutually optimized.
Abstract:
A hearing system for communication with a mobile telephone comprises a hearing device and a separate microphone unit adapted for picking up a voice of a user. The microphone unit comprises a) a multitude M≧2 of input units for picking up or receiving a signal representative of a sound from the environment; b) an adaptive multi-input unit noise reduction system for providing an estimate Ŝ of a target signal s comprising the user's voice, the multi-input unit noise reduction system comprises a multi-input beamformer filtering unit configured to determine filter weights w(k,m) for providing a beamformed signal, wherein signal components from other directions than a direction of a target signal source are attenuated, whereas signal components from the direction of the target signal source are left un-attenuated; and c) antenna and transceiver circuitry for transmitting said estimate Ŝ of the user's voice to another device.
Abstract:
A method comprises processing M subband communication signals and N target-cancelled signals in each subband with a set of beamformer coefficients to obtain an inverse target-cancelled covariance matrix of order N in each band; using a target absence signal to obtain an initial estimate of the noise power in a beamformer output signal averaged over recent frames with target absence in each subband; multiplying the initial noise estimate with a noise correction factor to obtain a refined estimate of the power of the beamformer output noise signal component in each subband; processing the refined estimate with the magnitude of the beamformer output to obtain a postfilter gain value in each subband; processing the beamformer output signal with the postfilter gain value to obtain a postfilter output signal in each subband; and processing the postfilter output subband signals to obtain an enhanced beamformed output signal.