Abstract:
Disclosed is an electronic device that is detachably coupled to a frame of a head-mounted device that can be mounted on a head of a user. The electronic device can consecutively perform tracking of the user's head using a sensor, when sensor data is abnormally received. Thereafter, if the sensor data is normally received from the head mounted device, the electronic device can consecutively perform the head tracking, enabling the user's action and the visual information to coincide with each other, thereby reducing inconvenience or misoperation which may occur in the case of the conventional head-mounted device.
Abstract:
A spectrometer includes a substrate; a slit which is provided on the substrate and through which light is incident onto the substrate; a metasurface including nanostructures that is configured to reflect and focus the light incident thereon through the slit, at different angles based on respective wavelengths; and a sensor which is provided on one side of the substrate that is opposite to another side of the substrate at which the metasurface is disposed, and configured to receive the light from the metasurface.
Abstract:
An optical modulator includes a plurality of nanostructures, each nanostructure of the plurality of nanostructures having a refractive index that is variable; a first insulation layer having a refractive index that is less than the individual refractive indexes of the plurality of nanostructures and surrounding the plurality of nanostructures; and a refractive index changer configured to change the refractive indexes of the plurality of nanostructures.
Abstract:
Disclosed are a beam combining/splitting modulator, a display apparatus including the same, and a spatial light modulation method. The beam combining/splitting modulator includes a light modulator including first and second modulation regions for modulating light, a polarization converter disposed at a side of an emitting surface of the light modulator and including a first transmissive region for polarizing and converting light incident from the first modulation region to have a first polarization and a second transmissive region for polarizing and converting light incident from the second modulation region to have a second polarization, a birefringence modulator disposed at the side of an emitting surface of the polarization converter and switching between a first state in which birefringence occurs and a second state in which birefringence does not occur, and a polarizer disposed at the side of an emitting surface of the birefringence modulator.
Abstract:
An image sensor includes an optical sensor layer including a plurality of light-sensitive cells configured to sense light to generate electrical signals, and a color filter array layer disposed on the optical sensor layer and including a plurality of color filters respectively facing the plurality of light-sensitive cells. Each of the plurality of color filters includes a nanostructure in which a first material having a first refractive index and a second material having a second refractive index higher than the first refractive index are arranged. The first material and the second material are alternatively positioned at an interval less than a central wavelength of a color of the color filter. Thus, a thin image sensor having good wavelength selectivity and suitable for obtaining high resolution images is provided.
Abstract:
An apparatus for acquiring bio-information includes a light source configured to radiate a laser beam to a region of interest including a blood vessel; a sensor configured to sense, from the region of interest, a change of a laser speckle generated by the radiated laser beam; and a controller configured to obtain a bio-signal indicating a change in a blood flow in the blood vessel based on the sensed change of the laser speckle.
Abstract:
An acousto-optic element array includes: acousto-optic elements each including an acousto-optic generator, a light supply, and a wave transducer; a gate driver that selects an acousto-optic element to be driven from among the acousto-optic elements; an electrical data driver that is connected to an electrical wire and transmits electrical data to an electro-optic modulator configured to control the acousto-optic generator of the selected acousto-optic element; and a wave data driver that is connected to a waveguide and transmits wave data to the wave transducer of the selected acousto-optic element.