Abstract:
A method and apparatus for performing uplink/downlink (UL/DL) transmission in a flexible subframe are provided. The method includes receiving downlink transmission configuration information in a flexible subframe that is different from configuration information of a subframe that has a fixed duplexing direction; detecting downlink control information transmitted by a base station in the flexible subframe; receiving downlink data corresponding to the downlink control information; and reporting Hybrid Automatic Repeat reQuest ACKnowledgment (HARQ-ACK) for the downlink data and downlink Channel State Indication (CSI) information to the base station.
Abstract:
A method for configuring spatial diversity of an enhanced Physical Downlink Control CHannel (ePDCCH) is provided. The method includes alternately using, by each Resource Element (RE) in an enhanced Resource Element Group (eREG), one of NAP Antenna Ports (AP) by granularity of one RE, mapping each RE in a Physical Resource Block (PRB) pair to a fixed AP. The present disclosure further discloses a method for constructing a localized enhanced Control Channel Element (eCCE) and a method for constructing a distributed eCCE. The present disclosure further discloses devices respectively corresponding to above-mentioned methods. By use of the present disclosure, performance of spatial diversity of a distributed ePDCCH is improved and a number of the REs in the localized eCCE and the distributed eCCE are averaged to guarantee that link performance is uniform or close to each other.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides a method for allocating Physical Uplink Control Channel (PUCCH) resources, including: a User Equipment (UE) detects a Physical Downlink Control Channel (PDCCH) scheduling a Physical Downlink Shared Channel (PDSCH) in a configured control resource set; the UE analyzes the detected PDCCH, correspondingly receives PDSCH, and determines PUCCH resources feeding back Hybrid Automatic Repeat request-ACK (HARQ-ACK) information; the UE transmits the HARQ-ACK information by using the determined PUCCH resources. By adopting the method in the present disclosure, a method for allocating PUCCH resources is provided. An upper-limit resource utilization is improved. And a method for indicating PUCCH resources in Downlink Control Information (DCI) is put forward, thereby reducing bit overheads of DCI.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a method for transmitting uplink signals, a user equipment (UE), and a base station. The UE determines an LBT type and a starting position of signal transmission according to scheduling information and LBT type of a previous subframe, a current subframe, and a subsequent subframe and whether there is a gap between these subframes.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart-city, smart-car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure provides a positioning method and device for user equipment (UE), and UE, the positioning method for UE comprising: detecting, by an auxiliary positioning entity, whether a condition of transmitting positioning related information is currently satisfied; transmitting the positioning related information, if the condition is satisfied, wherein the positioning related information comprises any one of the following: auxiliary positioning information, and location calculation information fed back for positioning request information transmitted by a target UE.
Abstract:
The present application provides a method for transmitting signals, which includes the following. A device determines time-frequency resources for transmitting a first type of system information and a second type of system information according to a synchronizing signal and/or a broadcast channel, determines a reference signal (RS) for demodulating the first type of system information and the second type of system information according to the time-frequency resources, and transmits the first type of system information, the second type of system information and the corresponding reference signal.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides a method for transmitting a sidelink signal. The method comprises: determining a Physical Sidelink Control CHannel (PSCCH) transmission mode allowed in a PSCCH transmission resource pool and a Physical Sidelink Shared CHannel (PSSCH) transmission mode allowed in a PSSCH transmission resource pool, respectively; determining a resource for transmitting a PSCCH and a resource for transmitting a PSSCH from the PSCCH transmission resource pool and the PSSCH transmission resource pool respectively; and transmitting the PSCCH according to the determined PSCCH transmission mode and the resource for transmitting the PSCCH and transmitting the PSSCH according to the determined PSSCH transmission mode and the resource for transmitting the PSSCH. The present disclosure also provides a corresponding device and storage media.
Abstract:
An apparatus and method for feeding back hybrid automatic repeat request-acknowledgement (HARQ-ACK) information are provided. The apparatus and method include user equipment (UE) that first receives a downlink grant (DL-GRANT) which schedules downlink HARQ transmission in a time-frequency bundling window corresponding to an uplink subframe used for feeding back HARQ-ACK, obtains a DL downlink assignment index (DL DAI) in the DL-GRANT, and determines a mapping value of each DL DAI. Then, according to the mapping value of the corresponding DL DAI, the HARQ-ACK bit of each HARQ feedback unit is mapped to a corresponding bit of a feedback bit sequence. According to the method and apparatus provided by the present disclosure, useless HARQ-ACK bits may be effectively removed, and efficiency for feeding back HARQ-ACK may be increased. As such, a downlink peak rate of a UE is ensured.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present disclosure provides a method of receiving downlink channel and/or downlink reference signal on an unlicensed band. An LTE user equipment (UE) receives control information of a cell operating on an unlicensed band, and receives downlink channel and/or downlink reference signal transmitted in the cell according to the control information. According to the present disclosure, data can be properly received on an unlicensed band.
Abstract:
Disclosed is a method for transmitting data by a user equipment (UE) in a wireless communication system including receiving, from a base station, scheduling information for scheduling a plurality of uplink (UL) subframes, determining a first transmit power for a physical uplink shared channel (PUSCH) in a UL subframe u among the plurality of UL subframes based on a first power adjustment factor for a UL subframe (u−1) before the UL subframe u among the plurality of UL subframes, in case that the UL subframe u is different from a first subframe scheduled by the scheduling information, identifying a minimum transmission power from among the first transmission power and a maximum transmission power predetermined for the UE, and transmitting data through the PUSCH in the UL subframe u using the identified minimum transmission power.