Abstract:
The present disclosure relates to a pre-5th-generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system such as a long term evolution (LTE). An operating method of a base station (BS) in a communication system supporting a time division multiplexing (TDD) scheme is provided. The operating method includes transmitting, to a user equipment (UE) which uses a second radio access technology (RAT) different from a first RAT used by other BS different from the BS, information related to downlink (DL) and uplink (UL) timing of the other BS and margin information for synchronizing DL and UL timing of the first RAT with DL and UL timing of the second RAT, wherein the information related to the DL and UL timing of the other BS is received from the other BS, or predicted by the BS.
Abstract:
A method and apparatus for improving a mobile problem caused by a narrow handover region in a boundary region between virtual cells constructed by a plurality of small base stations are provided. A plurality of Virtual Cells (VCs) include a plurality of Distributed Base Stations (DBSs) whose VCs cooperatively communicate with each other. An Intermediate Distributed Base Station (I-DBS) is located in a region where adjacent at least two VCs among the plurality of VCs are superimposed, and belongs to a different VC according to a time division scheme.
Abstract:
A millimeter radio wave communication system. In a method for operating a base station (BS) in an analog/digital mixed BF system, an analog BF direction is determined. A digital BE precoder is determined for the determined analog BE direction. Digital BF precoding is performed using the digital BE precoder with respect to the determined analog BF direction. A DownLink Reference Signal (DL RS) is transmitted in the analog BF direction on which the digital BF precoding has been performed.
Abstract:
A method for operating a receiving end in a wireless communication system includes receiving subset information on analog beams of a transmitting end, from a transmitting end, and determining a combination of transmit beams to be used for data signal transmission to the receiving end, on the basis of the subset information, wherein the subset information indicates at least one subset into which the analog beams are classified, and each analog beam of the at least one subset has a correlation equal to or less than a threshold, with one another. An apparatus for a receiving end includes a communication unit configured to receive subset information on analog beams of a transmitting end, from the transmitting end, and a controller configured to determine a combination of transmit beams to be used for data signal transmission to the receiving end, on the basis of the subset information.
Abstract:
A method and an apparatus for transmitting and receiving an uplink signal by a mobile terminal in a wireless communication system are provided. The first mobile terminal includes a receiver configured to receive, from a base station, a power control variable determined based on an interference value for a first receive beam used in order to receive an uplink signal of the first mobile terminal from among a plurality of receive beams of the base station, to receive, from the base station, neighboring receive beam allocation data indicating whether any of the receive beams in the plurality of receive beams, different from the first receive beam, is being used for uplink signal reception, to determine an uplink transmit power value based on the received power control variable and neighboring receive beam allocation data, and to transmit an uplink signal to the base station by using the determined uplink transmit power value.
Abstract:
A millimeter radio wave communication system. In a method for operating a base station (BS) in an analog/digital mixed BF system, an analog BF direction is determined. A digital BF precoder is determined for the determined analog BF direction. Digital BF precoding is performed using the digital BF precoder with respect to the determined analog BF direction. A DownLink Reference Signal (DL RS) is transmitted in the analog BF direction on which the digital BF precoding has been performed.
Abstract:
Provided is a method and apparatus for operating a control channel in a beamforming-based wireless communication system. The provided method includes acquiring information indicating a best Base Station (BS) receive beam for Uplink (UL) communication; determining a control channel region for UL control channels in a UL interval considering the best BS receive beam, the control channel region being a predetermined region that is mapped to the best BS receive beam; and exchanging information about the control channel between a BS and a Mobile Station (MS) through the control channel region.
Abstract:
An apparatus implements methods for random access in a wireless communication system using beamforming. A Subscriber Station (SS) measures a best downlink transmission beam among downlink transmission beams transmitted from a Base Station (BS), and transmits Random Access Channel (RACH) information, which includes indication information indicating the best downlink transmission beam, to the BS. The BS receives RACH information which includes indication information indicating a best downlink transmission beam among downlink transmission beams, and detects a RACH sequence and the best downlink transmission beam from the received RACH information.
Abstract:
Methods for fabricating semiconductor devices include forming a fin-type pattern protruding on a substrate, forming a gate electrode intersecting the fin-type pattern, forming a first recess adjacent to the gate electrode and within the fin-type pattern by using dry etching, forming a second recess by treating a surface of the first recess with a surface treatment process including a deposit process and an etch process, and forming an epitaxial pattern in the second recess.
Abstract:
In a method of manufacturing a vertical semiconductor device, an insulation layer and a sacrificial layer are alternatively and repeatedly formed on a substrate to define a structure. The structure is etched to form a hole therethrough that exposes the substrate. A first semiconductor pattern is formed in a lower portion of the hole, and a blocking pattern, a charge storage pattern, a tunnel insulation pattern and a first channel pattern are formed on a sidewall of the hole. A second channel pattern is formed on the first channel pattern and the semiconductor pattern, and a second semiconductor pattern is formed on a portion of the second channel pattern on the semiconductor pattern to define an upper channel pattern including the second channel pattern and the second semiconductor pattern. The sacrificial layers are replaced with a plurality of gates, respectively, including a conductive material.