Abstract:
It is an object of the present invention to provide an electronic ink display device provided with a panel structure with excellent mechanical strength and humidity resistance. An electronic ink layer 13 is provided on a TFT substrate 10 through a lamination adhesive layer 12. The electronic ink layer 13 consists of micro capsules with electronic ink sealed therein contained in binders. A PET layer 16 including an ITO layer 15 is provided on the electronic ink layer 13. A TPA layer 11 is formed at one end of the electronic ink layer 13. A protect sheet 20 is provided on the PET layer 16 of FPL through a clear adhesive layer 17. The protect sheet 20 is provided with a humidity resistant barrier film 18 on one principal surface thereof through a clear adhesive layer 19.
Abstract:
A display device for displaying a first view and a second view incorporates: a color generating layer; a barrier layer (SB3); and a light source; the color generating layer includes a plurality of color elements arranged as pixel elements, the pixel elements being arranged in a horizontal direction and in a vertical direction; each color element having a pitch (Py) in the vertical direction; the light source being arranged such that, during use, light generated by the light source passes through the barrier layer and the plurality of color elements of the color generating layer; the barrier layer, comprising a stepped barrier pattern of blocking structures and openings extending in the horizontal and the vertical directions, being arranged for defining a viewing angle of the first view and a viewing angle of the second view; and the light source being arranged for generating collimated light.
Abstract:
Systems for displaying images and control methods are provided. In this regard, a representative control method for a display panel comprising a first source line, a second source line, a third source line, a first gate line and a second gate line, comprises: asserting the first gate line; and sequentially providing a data signal of a first polarity from a first data driver to the first source line and the third source line, and then providing a data signal of a second polarity from the data driver to the second source line.
Abstract:
A backlight device comprises a mounting case and a stack of optical sheets attached to one another. The attached optical sheets includes at least a first optical sheet adhered with one or more tabs protruding from a side edge of a second optical sheet. The prearranged stack of attached optical sheets is assembled with the mounting case with one single placement operation conducted by one operator.
Abstract:
A pixel driving circuit with threshold voltage and power supply voltage compensation. The pixel circuit includes a storage capacitor, a transistor, a transfer circuit, a driving element, and a switching circuit. The transistor has a gate coupled to a discharge signal and is coupled between a first node and a second node. The discharge signal directs the transistor to turn on and then discharges the storage capacitor in a first period. The transfer circuit transfers a data signal or a reference signal to a first node of the storage capacitor. The driving element has a first terminal coupled to a first voltage, a second terminal coupled to a second node of the storage capacitor and a third terminal outputting a driving current. The switching circuit is coupled between the driving element and a display element. The switching circuit can be controlled to diode-connect the driving element in a second period, allowing the driving current to be output to the display element in a third time period.
Abstract:
A display device includes a display layer, a first glass substrate, a second glass substrate, an external light sensor, a black matrix and a color filter layer. The display layer has polarizing or light-emitting display components, which are arranged in a matrix. The first glass substrate and the second glass substrate are respectively disposed over and under the display layer. The external light sensor is disposed on an interface between the first glass substrate and the display layer for detecting an external light passing through the second glass substrate incident to the external light sensor. The black matrix is disposed on an interface between the second glass substrate and the display layer. The external light passing through the second glass substrate is sheltered by the black matrix. The color filter layer is deposited on the black matrix and has a specified transmittance spectrum property.
Abstract:
A system for displaying images is provided. The system includes a thin film transistor (TFT) device comprising a substrate having a pixel region, a driving thin film transistor and a switching thin film transistor. The driving thin film transistor and the switching thin film transistor are disposed on the substrate and in the pixel region. The driving thin film transistor includes a polysilicon active layer and the switching thin film transistor includes an amorphous silicon active layer. A method for fabricating the system for displaying images including the TFT device is also disclosed.
Abstract:
A display device and an electronic apparatus comprising the same are disclosed. The display apparatus includes a photo-sensor for detecting ambient light and outputting a photocurrent according to the intensity of the ambient light, wherein the display apparatus comprises a current sampling unit and a light detection control unit. The current sampling unit is configured to sample the photocurrent outputted from the photo-sensor and to output a plurality of sampling signals to indicate the magnitude of the photocurrent. The light detection control unit is configured to determine an average of the sampling signals outputted from the current sampling unit. The current sampling unit starts a next sampling period corresponding to the end of one of the sampling signals.
Abstract:
A system for displaying images. The system comprises a thin film transistor (TFT) device comprising a substrate having a pixel region. An active layer is disposed on the substrate of the pixel region, comprising a channel region, a pair of source/drain regions separated by the channel region. The channel region comprises dopants with a first conductivity type and a second conductivity type opposite to the first conductivity type. A gate structure is disposed on the active layer, comprising a stack of a gate dielectric layer and a gate layer. A method for fabricating a system for displaying images including the TFT device is also disclosed.
Abstract:
The invention relates to a capacitive touch sensor for use with a display device. The capacitive touch sensor includes a first electrode layer including a plurality of first sensor elements. The capacitive touch sensor has a longitudinal direction and a transversal direction, and the plurality of first sensor elements are separated with respect to each other in the longitudinal direction and the transversal direction.