Abstract:
A system for displaying images includes a multi-gate thin film transistor (TFT) device including an active layer, first and second gate structures, and first and second light-shielding layers. The active layer is disposed on a substrate in a pixel region. The first and second gate structures are disposed on the active layer. The first and second light-shielding layers are disposed between the substrate and the active layer. The active layer includes first and second source/drain regions and first and second channel regions. The first light-shielding layer corresponds to a first lightly doped region and laterally extends under at least a portion of the first channel region. The second light-shielding layer corresponds to the second lightly doped region and laterally extends under at least a portion of the second channel region.
Abstract:
A system for displaying images including a display panel and a fabrication method thereof are provided. The display panel includes a substrate having a first, second and third areas, a first patterned semiconductor layer disposed over the first area of the substrate, a first insulating layer covering the first patterned semiconductor layer and the first, the second and the third areas of the substrate, a second patterned semiconductor layer disposed on the first insulating layer of the first and the third areas respectively, a second insulating layer covering the second patterned semiconductor layer and the first insulating layer, and a patterned conductive layer disposed on the second insulating layer to form a first thin-film transistor at the first area and a second thin-film transistor at the third area.
Abstract:
A system for displaying images is provided. The system includes a thin film transistor (TFT) device comprising a substrate having a pixel region, a driving thin film transistor and a switching thin film transistor. The driving thin film transistor and the switching thin film transistor are disposed on the substrate and in the pixel region. The driving thin film transistor includes a polysilicon active layer and the switching thin film transistor includes an amorphous silicon active layer. A method for fabricating the system for displaying images including the TFT device is also disclosed.
Abstract:
A system for displaying images. The system includes a thin film transistor (TFT) device including a first insulating layer covering a first region and a second region of a substrate. A first polysilicon active layer is disposed in the first region and between the substrate and the first insulating layer. A second polysilicon active layer is disposed on the first insulating layer in the second region. A polysilicon gate layer is disposed above the first polysilicon active layer. A second insulating layer covers the polysilicon gate layer and the second polysilicon active layer. A metal gate layer is disposed above the second polysilicon active layer. A method for fabricating the system for displaying images including the TFT device is also disclosed.
Abstract:
An organic light emitting diode (OLED) display and thin film transistor (TFT) manufacturing method thereof are disclosed. According to the present invention, poly-silicon layers for forming active areas of non-driving TFT (e.g. peripheral circuit TFT and switch TFT) and driving TFT used in the OLED display are respectively made by using standard laser crystallization method and non-laser crystallization method or low energy laser crystallization method. Therefore, the peripheral circuit TFT has excellent electrical performance such as high carrier mobility, while the OLED-driving TFT has good stability so that the resultant display can operate with improved luminance uniformity.
Abstract:
A system for displaying images includes a multi-gate thin film transistor (TFT) device including an active layer, first and second gate structures, and first and second light-shielding layers. The active layer is disposed on a substrate in a pixel region. The first and second gate structures are disposed on the active layer. The first and second light-shielding layers are disposed between the substrate and the active layer. The active layer includes first and second source/drain regions and first and second channel regions. The first light-shielding layer corresponds to a first lightly doped region and laterally extends under at least a portion of the first channel region. The second light-shielding layer corresponds to the second lightly doped region and laterally extends under at least a portion of the second channel region.
Abstract:
A system for displaying images. The system includes a thin film transistor (TFT) device including a first gate layer disposed on a first region of a substrate and covered by a first insulating layer. A first polysilicon active layer is disposed on the first insulating layer and a second polysilicon layer is disposed on a second region of the substrate. A second insulating layer covers both of the first and second polysilicon gate layers. Second and third gate layers are respectively disposed on the second insulating layer above the first and second polysilicon active layers. A method for fabricating a system for displaying images including the TFT device is also disclosed.
Abstract:
A system for displaying images including a display panel is provided. The display panel has a display area and a peripheral area. The display panel includes a metal layer disposed on a first substrate. A patterned planarization layer is disposed on the metal layer, having at least one opening corresponding to the peripheral area, wherein a portion of the metal layer is exposed through the opening. A second substrate is disposed opposite to the first substrate. A seal is disposed at the peripheral area and between the first and the second substrates, wherein the seal covers the metal layer through the opening of the patterned planarization layer.
Abstract:
A system for displaying images. The system includes a thin film transistor (TFT) device including a first gate layer disposed on a first region of a substrate and covered by a first insulating layer. A first polysilicon active layer is disposed on the first insulating layer and a second polysilicon layer is disposed on a second region of the substrate. A second insulating layer covers both of the first and second polysilicon gate layers. Second and third gate layers are respectively disposed on the second insulating layer above the first and second polysilicon active layers. A method for fabricating a system for displaying images including the TFT device is also disclosed.
Abstract:
A system for displaying images. The system includes a thin film transistor (TFT) device including a first insulating layer covering a first region and a second region of a substrate. A first polysilicon active layer is disposed in the first region and between the substrate and the first insulating layer. A second polysilicon active layer is disposed on the first insulating layer in the second region. A polysilicon gate layer is disposed above the first polysilicon active layer. A second insulating layer covers the polysilicon gate layer and the second polysilicon active layer. A metal gate layer is disposed above the second polysilicon active layer. A method for fabricating the system for displaying images including the TFT device is also disclosed.