Abstract:
The invention relates to a process and apparatus for forming a particulate composition, especially a particle glass composition, through the use of shock waves. A nozzle element is utilized having inlets for introduction of cold and heated gas and a delivery tube for introducing molten material. Through the introduction of the cold and heated gases, droplets are formed from a molten stream, a cone-shaped standing shock wave is formed, and shock waves are formed via a modified Hartmann-Sprenger chamber, the shock waves impinging on the droplet stream to break up the larger droplets.
Abstract:
The invention relates to a device for forming aerosol, the device comprising at least one gas-dispersing atomizer for atomizing a liquid into aerosol by means of gas at an atomizing head of the atomizer and an atomizing chamber, which is in flow connection with the atomizing head and in which flow restraints are arranged for changing the hydrodynamic properties of the aerosol flow discharging from the atomizing head. According to the present invention the flow restraints are arranged in the inner walls of the atomizing chamber in such a manner that they protrude from the inner walls to the inside of the atomizing chamber.
Abstract:
A method for atomizing a liquid including providing an atomizer having a liquid supply conduit having an outlet at one end, a gas supply conduit opening into a port in the liquid supply conduit upstream of the outlet, and a means for imparting vibrational energy to the atomizer. In an embodiment, the liquid supply conduit and gas supply conduit are coaxially displaced relative to one another. The method further includes flowing liquid through the liquid supply conduit to the outlet while simultaneously flowing gas through the gas supply conduit, and imparting vibrational energy to the atomizer to atomize the liquid exiting from the outlet. The introduction of gas at the port results in a spray of droplets with improved dimensional properties.
Abstract:
An electrostatic spray module for applying agricultural liquids such as a pesticide to crops where, externally to the spray module the number of connections is reduced to three, one for the liquid pesticide, one for compressed air and one for a low voltage signal. Internally to the spray module, the low voltage is converted to a high voltage signal, which is, along with the pesticide and the compressed air delivered to one or more electrostatic spray nozzles using only two electrically conductive pipes, a gas delivery pipe and a liquid delivery pipe. The nozzles fit into the gas delivery pipe and draw the compressed air through gas channel openings in the side of the nozzles. The gas delivery pipe doubles as the means to delivery the high voltage signal to the nozzles. Each nozzle has a liquid feed from the liquid delivery pipe, which carries ground voltage, maintaining the liquid at ground voltage. The grounded liquid merges with the compressed air in the nozzles to form an atomized liquid. The atomized liquid then passes through an electrode, which is electrically charged by the high voltage signal to form an electrostatic spray. The electrical charge in the spray leads to better dispersal of the spray due to the droplets in the spray repelling from each other, and further improves the adherence of the spray to crops which attract the charged droplets.
Abstract:
In a mould-pressing machine, atomizing nozzles with a vortex chamber deliver atomized liquid mixed with air through outlet apertures. The atomizing air nozzle or nozzles are constantly supplied with compressed air through a pressure conduit while the liquid nozzle solely receives liquid under pressure through a liquid channel and a slave valve controlled by the liquid pressure in the periods during which injection of liquid mist is desired. A first (upstream) vortex chamber is provided upstream of a second (downstream) vortex chamber, and between these two vortex chambers a flow path is provided to interconnect the two vortex chambers, through which flow path the liquid mist having been formed in the first vortex chamber is forced to pass and change its direction and velocity of flow at least one, thus reducing the droplet size of the liquid mist.
Abstract:
There is disclosed a spray head assembly for dispensing a liquid spray with air under pressure. An internal valve in the spray head closes for positively preventing dripping of the liquid when the air under pressure is stopped and a piston is provided and is responsive to the development of a back pressure within the spray head for opening the valve during a spraying operation.