Abstract:
In a process/an apparatus for producing bleached cellulose in which a lignin- and cellulose-containing suspension is subjected to at least one process step for oxygen-assisted bleaching in a reactor, such as alkaline oxygen delignification, oxygen-enhanced extraction or oxygen-enhanced peroxide bleaching, the oxygen required for the oxygen-assisted bleaching is supplied to the reactor at least partially in the form of oxygen-containing nanobubbles. The small size and high stability of the nanobubbles allow uniform distribution of the oxygen in the suspension and a comparatively long exposure time. The efficiency of the bleaching is thus substantially increased.
Abstract:
The present invention relates to a process for treating pulp comprising a step, wherein the pulp is treated with distilled percarboxylic acid, such as distilled per-carboxylic acid (dPAA), and peroxide, such as hydrogen peroxide.
Abstract:
The present technology is directed to fluff pulps with improved odor control as well as methods of making such fluff pulps. A fluff pulp is provided that includes a bleached kraft fiber and a copper ion content from about 0.2 ppm to about 50 ppm by weight of the bleached kraft fiber. The bleached kraft fiber includes a length-weighted average fiber length of at least about 2 mm, a copper number of less than about 7, a carboxyl content of more than about 3.5 meq/100 grams; an ISO brightness of at least 80; and a viscosity from about 2 cps to about 9 cps.
Abstract:
An excess heat recovery apparatus and process for high temperature chlorine dioxide bleaching of pulp is provided. The pulp of the high temperature chlorine dioxide bleaching stage enters a tube-side of a chlorine dioxide preheater through a pipeline. The low-temperature chlorine dioxide in the storage tank enters a shell-side pipeline of the chlorine dioxide preheater. 0.5 mol/L of a stabilizer may be added during preheating to prevent ClO2 from decomposing during the heating process. Preheated chlorine dioxide is then moved into a pulp mixer and the pH is adjusted to 3.2-3.8. The mixed pulp is then moved into a high temperature chlorine dioxide bleaching tower for bleaching. The cooling pulp, now out of the preheater, is washed in an alkaline extraction stage. The waste water from the washing flows directly into an effluent treatment system and is recycled after treatment.