Abstract:
A combination internal combustion and steam engine includes a cylinder having a piston mounted for reciprocation therein with an internal combustion chamber and a steam chamber in the cylinder adjacent the piston and at least one steam exhaust port positioned to communicate with the steam chamber through the wall of the cylinder for exhausting steam at a location in the cylinder wall adjacent to an engine cylinder cap surface that is heated externally to assist in reducing chilling or condensation of steam entering the steam chamber from a boiler fired by waste combustion heat. The invention also permits steam admitted from a steam chest jacketing the cylinder cap to be exhausted from the engine when the steam chamber is in an expanded state whereupon residual steam is then recompressed prior to admitting the next charge of steam with the stream in the steam chamber being heated directly by the combustion chamber as well as by heat from the steam chest. An I.C. exhaust powered heater is a part of an I.C. exhaust manifold which functions as an afterburner with supplemental air injection for promoting combustion of unburned exhaust constituents to superheat steam that is piped through it to the steam chest. The invention provides valves for balancing steam engine displacement with boiler output and for cylinder compounding with a boiler, heat exchange and control arrangement for efficiently recovering waste heat.
Abstract:
A heat engine is provided which includes: a boiler unit including an evaporation chamber and a fluid-pool chamber, the evaporation chamber heating a working fluid by supplied heat and generating vapor of the fluid, and the fluid-pool chamber collecting the fluid supplied to the evaporation chamber; an output unit through which the vapor flows, and which converts energy of the vapor to mechanical energy; a condensation unit which condenses the vapor that has passed through the output unit, and refluxes the condensed fluid to the fluid-pool chamber; and a working fluid guide member which is disposed in the boiler unit, and which sucks the fluid in the fluid-pool chamber by using capillary force and supplies the fluid to the evaporation chamber. The evaporation chamber is separated from the fluid-pool chamber. Pressure in the evaporation chamber is higher than pressure in the fluid-pool chamber. The working fluid guide member satisfies (2σ/r)·cos θ>PH−PL.
Abstract:
An external combustion engine includes: a main container sealed with a working fluid in a liquid state adapted to flow; a heater for heating a portion of the working fluid in the main container and generating the vapor of the working fluid; a cooler for cooling and liquefying the vapor; an output unit for outputting by converting the displacement of the liquid portion of the working fluid generated by the volume change of the working fluid due to the generation and liquefaction of the vapor into mechanical energy; and an auxiliary container communicating with the main container. The heater, the cooler and the output unit are arranged in order, in the direction of displacement of the working fluid. The working fluid is sealed in the auxiliary container which communicates with the portion of the main container nearer the output unit than the cooler. The engine further includes a communication area adjusting unit for establishing communication between the main container and the auxiliary container with a first communication area in normal operation mode and with a second communication area larger than the first communication area at the time of engine start. Thus, a predetermined output is produced quickly after engine start.
Abstract:
An external combustion engine formed with a plurality of heaters for improving output, provided with a container in which a working medium is sealed flowable in a liquid state, the container being formed with heaters for heating part of a working medium to generate vapor of the working medium and coolers for cooling the vapor to liquefy, the generation and liquefaction of the vapor causing the working medium to change in volume and the displacement of the liquid part of the working medium caused by the change in volume of the working medium being converted to mechanical energy for output, wherein at least the parts of the container connected with the heaters being branched into pluralities of tubular parts, a plurality of heaters are formed so as to be connected with the plurality of tubular parts, a plurality of vapor reservoirs for storing the vapor of the working medium are formed so as to be connected with the plurality of heaters, and the plurality of vapor reservoirs are connected with each other.
Abstract:
An external combustion engine is disclosed, comprising a container (11) for sealing a working liquid (12) in a way adapted to allow the liquid to flow therein, a heater (13) for heating and vaporizing the working liquid (12) in the container (11), and a cooler (14) for cooling and liquefying the vapor of the working liquid (12) heated and vaporized by the heater (13). The displacement of the working liquid (12) caused by the volume change of the vapor of the working liquid (12) is output by being converted into mechanical energy. In the heated portion (11d) of the container (11) for vaporizing the working liquid (12), the direction of displacement of the working liquid (12) at the parts (17, 19) far from the cooler (14) is changed with respect to the direction of displacement at the part (16) near to the cooler (14).
Abstract:
An external combustion engine includes: a main container sealed with a working fluid in a liquid state adapted to flow; a heater for heating a portion of the working fluid in the main container and generating the vapor of the working fluid; a cooler for cooling and liquefying the vapor; an output unit for outputting by converting the displacement of the liquid portion of the working fluid generated by the volume change of the working fluid due to the generation and liquefaction of the vapor into mechanical energy; and an auxiliary container communicating with the main container. The heater, the cooler and the output unit are arranged in order, in the direction of displacement of the working fluid. The working fluid is sealed in the auxiliary container which communicates with the portion of the main container nearer the output unit than the cooler. The engine further includes a communication area adjusting unit for establishing communication between the main container and the auxiliary container with a first communication area in normal operation mode and with a second communication area larger than the first communication area at the time of engine start. Thus, a predetermined output is produced quickly after engine start.
Abstract:
A stem engine has a fluid container, a heating device and a cooling device. The fluid container has an outer pipe having an upper closed end, and an inner pipe provided in the outer pipe and having a fluid inlet port through which the inside of the inner pipe is operatively communicated with the outside of the inner pipe. The inner pipe has a pressure control device at its lower end, and a fluid injection port at its upper end for injecting the working fluid in the inner pipe into a space defined between the inner pipe and the outer pipe, when the pressure in the inner pipe is increased. The working fluid injected into the space between the inner and outer pipes is heated and vaporized by the heating device, so that volumetric expansion of the working fluid takes place to increase fluid pressure in the fluid container. The vaporized steam is then cooled and liquidized by the cooling device and thereby the volumetric contraction takes place, so that the fluid pressure is decreased. By repeating the above volumetric expansion and contraction of the working fluid, the pressure change is given to the working fluid in the fluid container.
Abstract:
A steam engine system having a condensate-feeding apparatus connected to the piston for depositing condensate from the condenser outlet into a heat-exchanging apparatus when the piston is substantially at the end of its drive stroke, the heatexchanging apparatus being in communication with the cylinder through a port for mixing the condensate with residual steam to heat the condensate during the compression stroke of the piston, and having a condensate-discharging apparatus downstream of the heat-exchanging apparatus for discharging the heated condensate to a boiler inlet during the compression stroke of the piston. The condensate-feeding apparatus includes a plunger operated by the piston and movable into the condenser outlet during the compression stroke and into the cylinder during the drive stroke, the plunger having a pocket receiving condensate from the condenser outlet and dispensing the condensate into the port, and thence into the heat-exchanging apparatus. The heat-exchanging apparatus includes a screen extending across a chambaer in communication with the cylinder through the port, and acting to break the condensate into fine drops and to mix the drops with the residual steam. The condensate-discharging apparatus includes a funnel extending across the chamber downstream of the screen, the funnel collecting the heated condensate and delivering it to a boiler feed pump. A valve member is engageable with a valve seat defining a valve port in the funnel to close the valve port, and is disengageable from the valve seat at a predetermined pressure in the chamber upstream of the funnel so as to deliver the heated condensate to the boiler feed pump. A process of operating a steam engine including the steps of mixing condensate with residual steam during the compression stroke of the piston to heat the condensate, and discharging the heated condensate to the boiler when the steam admission port is closed during the compression stroke. The heated condensate, when discharged, is at a pressure higher than that of the original condensate and at a temperature nearer that of the boiler liquid. The process further includes the steps of breaking the condensate into fine drops and mixing the drops with the residual steam to achieve intimate mixing for efficient heat exchange from the steam to the condensate, and collecting the heated condensate drops and discharging the collected heated condensate to the boiler feed line.